...
首页> 外文期刊>Applied Physics >Research on the origin of negative effect in uniform doping GaN-based Gunn diode under THz frequency
【24h】

Research on the origin of negative effect in uniform doping GaN-based Gunn diode under THz frequency

机译:太赫兹频率下均匀掺杂GaN基耿氏二极管负效应源的研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The transport properties of GaN-based uniform doping Gunn diode are calculated by an ensemble Monte Carlo method. The drift velocity, electron density, and electric field distribution as a function of time in the device are illustrated under direct current (DC) and alternating current (AC) bias condition. With the help of port current, the relationship between electron transport status and port current can be acquired, which will be useful to understand the origin of negative differential resistance and guide the device design. Different from the traditional opinion, the maximum current do not appear at the same time when electron accumulation domain arrives at device anode. The reason is that when electron accumulation domain comes into heavily doped anode, the velocity will be decelerated a lot for highly ionized impurity scattering, and the electrons in the domain will be used to neutralize positive ion region which provides the electrons during formation of the domain. Some researchers believe that the electrons in the domain come from heavily doped cathode region, but our simulation shows clearly that the electrons come from heavily doped anode side. Finally, the AC simulation shows the possibility of negative differential resistance in GaN diode under THz frequency. What is more, AC simulation result has the same tendency with DC simulation.
机译:通过集成蒙特卡罗方法计算出GaN基均匀掺杂耿氏二极管的传输性能。说明了在直流(DC)和交流(AC)偏置条件下,器件中的漂移速度,电子密度和电场分布随时间的变化。借助于端口电流,可以获得电子传输状态与端口电流之间的关系,这对于理解负差分电阻的起源和指导器件设计将是有用的。与传统观点不同,当电子累积域到达器件阳极时,最大电流不会同时出现。原因是,当电子累积畴进入重掺杂阳极时,速度将大大降低,以实现高度电离的杂质散射,并且畴中的电子将用于中和在形成畴时提供电子的正离子区域。一些研究人员认为,畴中的电子来自重掺杂的阴极区域,但我们的模拟清楚地表明,电子来自重掺杂的阳极侧。最后,交流仿真显示出在THz频率下GaN二极管中存在负差分电阻的可能性。而且,交流仿真结果与直流仿真具有相同的趋势。

著录项

  • 来源
    《Applied Physics》 |2016年第6期|578.1-578.6|共6页
  • 作者单位

    Key Laboratory of Ministry of Education for Wide Band-Gap Semiconductor Material and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China;

    Key Laboratory of Ministry of Education for Wide Band-Gap Semiconductor Material and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China;

    Key Laboratory of Ministry of Education for Wide Band-Gap Semiconductor Material and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China;

    Key Laboratory of Ministry of Education for Wide Band-Gap Semiconductor Material and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号