首页> 外文期刊>Applied physics >Simultaneous quantification of Au and Ag composition from Au-Ag bi-metallic LIBS spectra combined with shallow neural network model for multi-output regression
【24h】

Simultaneous quantification of Au and Ag composition from Au-Ag bi-metallic LIBS spectra combined with shallow neural network model for multi-output regression

机译:来自Au-Ag双金属Libs谱的Au和Ag组合物的同时定量与多输出回归浅神经网络模型相结合

获取原文
获取原文并翻译 | 示例

摘要

The multi-output regression model has been used in this work to predict the simultaneous compositions of gold (Au) and silver (Ag) from the laser-induced breakdown spectroscopy (LIBS) spectra of an Ag-Au bimetallic target. Multi-output regression with shallow neural networks uses two nodes at the output layer to predict the composition of one element each. The LIBS spectra of the bimetallic target at three different compositions (Au20-Ag80, Au50-Ag50, and Au80-Ag20) in conjunction with aluminium, copper, and bronze LIBS spectra (substituting for Au0-Ag0 composition) were used to train the model. Principal component analysis (PCA) was performed for dimensionality reduction and the output of the PCA was fed to the regression model. The trained model, after evaluation on the test set, was used for predictions from unseen LIBS spectra of Au30-Ag70, which was not present in the original training set. We have demonstrated the success of this model with an error of 10%. For the first time, to the best of our knowledge, we used the time-resolved spectra for data augmentation to generalize the model and likewise to study any further improvement in the performance of the model. This facilitated in generalizing the model, which in turn improved the performance of the model. This method can further be developed to predict the composition of multiple elements simultaneously. The terminology used in the deep learning models is elucidated with simplified equations and illustrations.
机译:多输出回归模型已用于该工作中,以预测来自AG-Au Bimetallic靶的激光诱导的击穿光谱(Libs)光谱的金(Au)和银(Ag)的同时组成。具有浅神经网络的多输出回归在输出层处使用两个节点来预测每个元素的组成。使用三种不同的组合物(Au20-Ag80,Au50-Ag50和Au80-Ag50)的双金属靶标的Libs光谱与铝,铜和青铜libs光谱(取代Au0-Ag0组合物)培训模型。针对维度降低进行主成分分析(PCA),并将PCA的输出送入回归模型。经过培训的模型,在测试集的评估后,用于从AU30-AG70的看不见的Libs Spectra的预测,其不存在于原始训练集中。我们已经展示了该模型的成功与误差误差10%。我们首次据我们所知,我们使用时间解析光谱来拓展,以概括模型,同样地研究模型性能的进一步改进。这促进了概括模型,这反过来改善了模型的性能。可以进一步开发该方法以同时预测多个元件的组成。深度学习模型中使用的术语以简化的方程和插图阐明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号