首页> 外文期刊>Applied Physics Letters >High electron mobility and low noise quantum point contacts in an ultra-shallow all-epitaxial metal gate GaAs/Al_xGa_(1-x)As heterostructure
【24h】

High electron mobility and low noise quantum point contacts in an ultra-shallow all-epitaxial metal gate GaAs/Al_xGa_(1-x)As heterostructure

机译:在超浅全外延金属栅极GaAs / Al_xga_(1-x)中的高电子迁移率和低噪声量子点接触作为异质结构

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The mobility of the two-dimensional electron gas (2DEG) in shallow GaAs/Al_xGa_(1-x)As heterostructures is strongly suppressed by unwanted Coulomb scattering from surface charge, likely located in native surface oxides that form after the wafer is removed from the crystal growth system. Here, we show that this native surface oxide can be eliminated by growing an epitaxial aluminum gate before removing the wafer from the growth chamber. We fabricate accumulation mode devices on two wafers with nearly identical structures and growth conditions: one with an epitaxial aluminum gate 35 nm above the channel and another with an ex situ metal gate deposited on an aluminum oxide dielectric. Low temperature transport measurements show that the epitaxial gate design greatly reduces surface charge scattering, with up to 2.5× increase in mobility. Despite the ultra-shallow 2DEG (35 nm), the mobility remains high even at low carrier densities. Finally, we show that the epitaxial aluminum gate can be patterned to make nanostructures by fabricating a quantum point contact that shows robust and reproducible 1D conductance quantization, with extremely low charge noise.
机译:由于从表面电荷的不需要的库仑散射强烈地抑制了浅GaAs / Al_xga_(1-x)中的二维电子气体(2deg)的迁移率,这是由表面电荷的不需要的库仑散射,可能位于从晶片中除去晶片之后的天然表面氧化物水晶生长系统。在这里,我们表明,通过在从生长室移除晶片之前,可以通过生长外延铝栅极来消除该天然表面氧化物。我们在两个晶片上制造累积模式装置,具有几乎相同的结构和生长条件:一个具有在通道上方的外延铝栅极35nm,另一个具有沉积在氧化铝电介质上的Ex的原位金属栅极。低温输送测量表明,外延栅极设计大大减少了表面电荷散射,移动性高达2.5倍。尽管超浅2deg(35nm),即使在低载体密度下,移动性也仍然很高。最后,我们表明,通过制造具有极低电荷噪声的量子点接触,可以将外延铝栅极图案化以制造纳米结构,该量子点接触具有极低的电荷噪声。

著录项

  • 来源
    《Applied Physics Letters》 |2021年第6期|063105.1-063105.5|共5页
  • 作者单位

    School of Physics University of New South Wales Sydney New South Wales 2052 Australia ARC Centre of Excellence for Future Low-Energy Electronics Technologies University of New South Wales Sydney New South Wales 2052 Australia;

    School of Physics University of New South Wales Sydney New South Wales 2052 Australia ARC Centre of Excellence for Future Low-Energy Electronics Technologies University of New South Wales Sydney New South Wales 2052 Australia;

    Cavendish Laboratory University of Cambridge Cambridge CB3 0HE United Kingdom;

    Cavendish Laboratory University of Cambridge Cambridge CB3 0HE United Kingdom;

    School of Physics University of New South Wales Sydney New South Wales 2052 Australia ARC Centre of Excellence for Future Low-Energy Electronics Technologies University of New South Wales Sydney New South Wales 2052 Australia School of Science University of New South Wales Canberra ACT 2612 Australia;

    School of Physics University of New South Wales Sydney New South Wales 2052 Australia ARC Centre of Excellence for Future Low-Energy Electronics Technologies University of New South Wales Sydney New South Wales 2052 Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号