首页> 外文期刊>Applied Physics Letters >A non-invasive gating method for probing 2D electron systems on pristine, intrinsic H-Si(111) surfaces
【24h】

A non-invasive gating method for probing 2D electron systems on pristine, intrinsic H-Si(111) surfaces

机译:一种用于探测原始H-Si(111)表面上的2D电子系统的非侵入式门控方法

获取原文
获取原文并翻译 | 示例
       

摘要

Intrinsic Si(111) surfaces passivated with atomic hydrogen are an ideal platform to host two-dimensional electron systems. Traditional methods to probe these surfaces, however, typically involve the placement of dopants and metals directly onto the surface and subsequent high temperature processing, which can be harsh and invasive and lead to surface degradation. Here, we detail a non-invasive gating approach for probing two-dimensional electron systems on intrinsic H-Si(111) surfaces using a silicon-on-insulator (SOI) gating assembly. In this architecture, all harsh device fabrication is performed on a single SOI chip, ensuring that the H-Si(111) surface remains in pristine condition, or as close to the original manufactured intrinsic-Si wafer as possible. To achieve this, we intentionally keep our H-Si(111) surfaces free of any dopants or metals, which are instead placed on the adjacent SOI chip. All electrical components, including Ohmic contacts and accumulation and depletion gates, are housed in the SOI piece. The Ohmic contacts on the SOI piece are brought into physical and electrical contact with the pristine H-Si(111) piece after being van der Waals bonded at room temperature, while all gates on the SOI piece are separated from the H-Si(111) surface by vacuum. Architecture details, baseline operation tests, and 77K device characterization measurements will be discussed, as well as the implications of going beyond H-Si(111) surfaces and using our device architecture to facilitate transport measurements on halogen-terminated Si surfaces.
机译:用原子氢钝化的本征Si(111)表面是托管二维电子系统的理想平台。然而,探测这些表面的传统方法通常涉及将掺杂剂和金属直接放在表面上和随后的高温处理上,这可能是苛刻的并且是侵入性的并且导致表面劣化。在这里,我们使用硅式 - 在内部H-Si(111)表面上探测二维电子系统的非侵入式门控方法,使用硅式绝缘体(SOI)门控组件。在该架构中,所有苛刻设备制造都在单个SOI芯片上执行,确保H-Si(111)表面保持在原始状态,或尽可能靠近原始制造的内在-Si晶片。为实现这一目标,我们有意地保持我们的H-Si(111)表面无任何掺杂剂或金属,这是放置在相邻的SOI芯片上。包括欧姆触点和累积栅极,包括欧姆触点和累积栅极的所有电气部件都容纳在SOI件中。在室温下粘合的范德瓦尔斯,SOI件上的欧姆触点与原始H-Si(111)件相连,同时使用SOI件上的所有栅极与H-Si分离(111 )表面真空。将讨论建筑细节,基线操作测试和77K设备表征测量,以及超越H-Si(111)表面并使用我们的设备架构的影响,以便于在卤素端接的Si表面上运输测量。

著录项

  • 来源
    《Applied Physics Letters》 |2020年第15期|151603.1-151603.5|共5页
  • 作者

    L. D. Robertson; B. E. Kane;

  • 作者单位

    Laboratory for Physical Sciences University of Maryland College Park Maryland 20740 USA;

    Laboratory for Physical Sciences University of Maryland College Park Maryland 20740 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 22:18:04

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号