首页> 外文期刊>Applied Physics Letters >High mobility and high thermoelectric power factor in epitaxial ScN thin films deposited with plasma-assisted molecular beam epitaxy
【24h】

High mobility and high thermoelectric power factor in epitaxial ScN thin films deposited with plasma-assisted molecular beam epitaxy

机译:具有等离子体辅助分子束外延沉积的外延SCN薄膜中的高迁移率和高温功率因数

获取原文
获取原文并翻译 | 示例
       

摘要

Scandium nitride (ScN) is an emerging rock salt Ⅲ-nitride semiconductor and has attracted significant interest in recent years for its potential thermoelectric applications as a substrate for high-quality epitaxial GaN growth and as a semiconducting component for epitaxial single-crystalline metal/semiconductor superlattices for thermionic energy conversion. Solid-solution alloys of ScN with traditional Ⅲ-nitrides such as Al_xSc_(1-x)N have demonstrated piezoelectric and ferroelectric properties and are actively researched for device applications. While most of these exciting developments in ScN research have employed films deposited using low-vacuum methods such as magnetron sputtering and physical and chemical vapor depositions for thermoelectric applications and Schottky barrier-based thermionic energy conversion, it is necessary and important to avoid impurities, tune the carrier concentrations, and achieve high-mobility in epitaxial films. Here, we report the high-mobility and high-thermoelectric power factor in epitaxial ScN thin films deposited on MgO substrates by plasma-assisted molecular beam epitaxy. Microstructural characterization shows epitaxial 002 oriented ScN film growth on MgO (001) substrates. Electrical measurements demonstrated a high room-temperature mobility of 127cm~2/Vs and temperature-dependent mobility in the temperature range of 50-400 K that is dominated by dislocation and grain boundary scattering. High mobility in ScN films leads to large Seebeck coefficients (- 175 μV/K at 950 K) and, along with a moderately high electrical conductivity, a large thermoelectric power factor (2.3 × 10~(-3) W/m-K~2 at 500 K) was achieved, which makes ScN a promising candidate for thermoelectric applications. The thermal conductivity of the films, however, was found to be a bit large, which resulted in a maximum figure-of-merit of 0.17 at 500 K.
机译:氮化钪(SCN)是一种新兴岩盐Ⅲ-氮化物半导体,并且近年来吸引了其潜在的热电应用作为用于高质量外延GaN生长的基材和外延单晶金属/半导体的半导体组分用于热离子能量转换的超晶格。 SCN与传统Ⅲ-氮化物如AL_XSC_(1-X)N的固体溶液合金已经证明了压电和铁电性能,并积极研究了装置应用。虽然SCN研究中的大多数这些激动人心的发展已经采用了使用低真空方法沉积的薄膜,例如用于热电应用的磁控溅射和物理和化学气相沉积和肖特基势垒基热量能量转换,但避免杂质,曲调是必要和重要的载体浓度,并在外延薄膜中实现高迁移率。在这里,通过等离子体辅助分子束外延报告沉积在MgO基质上的外延SCN薄膜中的高迁移率和高温电力因子。微结构表征在MgO(001)衬底上显示外延002取向SCN膜生长。电测量显示在50-400k的温度范围内的127cm〜2 / vs和温度依赖性迁移率的高室温迁移率,其由位错和晶界散射主导。 SCN薄膜中的高迁移率导致大的塞培克系数( - 175μV/ k处为950 k),以及适度高的电导率,大的热电功率因数(2.3×10〜(-3)w / mk〜2实现了500 k),使SCN成为热电应用的有希望的候选者。然而,发现薄膜的导热率为一点,导致最大值为0.17以500k。

著录项

  • 来源
    《Applied Physics Letters》 |2020年第15期|152103.1-152103.5|共5页
  • 作者单位

    Chemistry and Physics of Materials Unit Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore 560064 India International Centre for Materials Science Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore 560064 India School of Advanced Materials Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore 560064 India;

    Chemistry and Physics of Materials Unit Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore 560064 India International Centre for Materials Science Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore 560064 India School of Advanced Materials Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore 560064 India;

    Instituto de Micro and Nanotecnologia IMN-CSIC C/Isaac Newton 8 Tres Cantos 28760 Madrid Spain;

    Chemistry and Physics of Materials Unit Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore 560064 India International Centre for Materials Science Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore 560064 India School of Advanced Materials Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore 560064 India;

    Australian Centre for Microscopy and Microanalysis The University of Sydney Camperdown NSW 2006 Australia;

    Department of Mechanical and Aerospace Engineering University of Virginia Charlottesville Virginia 22904 USA;

    Australian Centre for Microscopy and Microanalysis The University of Sydney Camperdown NSW 2006 Australia;

    Australian Centre for Microscopy and Microanalysis The University of Sydney Camperdown NSW 2006 Australia;

    Department of Mechanical and Aerospace Engineering University of Virginia Charlottesville Virginia 22904 USA Department of Materials Science and Engineering University of Virginia Charlottesville Virginia 22904 USA Department of Physics University of Virginia Charlottesville Virginia 22904 USA;

    Instituto de Micro and Nanotecnologia IMN-CSIC C/Isaac Newton 8 Tres Cantos 28760 Madrid Spain;

    Chemistry and Physics of Materials Unit Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore 560064 India International Centre for Materials Science Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore 560064 India School of Advanced Materials Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore 560064 India;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 22:17:53

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号