首页> 外文期刊>Applied Physics Letters >Ultra-narrow electromagnetically induced transparency in the visible and near-infrared regions
【24h】

Ultra-narrow electromagnetically induced transparency in the visible and near-infrared regions

机译:超窄电磁感应在可见光和近红外区域的透明度

获取原文
获取原文并翻译 | 示例

摘要

The electromagnetically induced transparency (EIT) phenomenon is of great importance for plenty of applications, such as slow light, nonlinear effect, nanosensing, and metamaterials. The linewidth is a key factor to evaluate the characteristic of EIT, because the drastic change in dispersion in the narrow spectra can make good control of light. However, only a few reports are related to the ultranarrow EIT. In this paper, we propose a nanosystem based on a gold grating and a multilayer structure. An ultranarrow spectral EIT peak with a linewidth range of 0.75-1.5nm is observed in such a nanosystem in the visible and near-infrared regions. The physical mechanism leading to the phenomenon is different from those in previous works. In the proposed nanosystem, the ultranarrow EIT peak is formed by the destructive interference of the Fabry-Perot resonance and waveguide modes. Analytic results calculated from the model equations are also found to be consistent with numerical simulations for both normal and oblique incidences. Our work provides another efficient way to realize an ultranarrow EIT.
机译:电磁感应透明性(EIT)现象对于许多应用(例如慢光,非线性效应,纳米传感和超材料)非常重要。线宽是评估EIT特性的关键因素,因为窄光谱中色散的剧烈变化可以很好地控制光。但是,只有少数报告与超窄带EIT有关。在本文中,我们提出了一种基于金光栅和多层结构的纳米系统。在这种纳米系统中,在可见光和近红外区域观察到线宽范围为0.75-1.5nm的超窄光谱EIT峰。导致这种现象的物理机制与以前的工作不同。在提出的纳米系统中,超细EIT峰是由Fabry-Perot共振和波导模式的破坏性干涉形成的。从模型方程计算出的分析结果也被发现与法向和斜向入射的数值模拟是一致的。我们的工作提供了另一种实现超薄EIT的有效方法。

著录项

  • 来源
    《Applied Physics Letters》 |2019年第21期|213103.1-213103.5|共5页
  • 作者单位

    Dalian Univ Technol Dept Phys Dalian 116024 Liaoning Peoples R China;

    Univ Cent Florida Dept Chem Orlando FL 32816 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号