首页> 外文期刊>Applied Physics Letters >Polarization effects on gate leakage in InAlN/AlN/GaN high-electron-mobility transistors
【24h】

Polarization effects on gate leakage in InAlN/AlN/GaN high-electron-mobility transistors

机译:极化对InAlN / AlN / GaN高电子迁移率晶体管中栅极泄漏的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Lattice-matched InAlN/AlN/GaN high electron mobility transistors offer high performance with attractive electronic and thermal properties. For high-voltage applications, gate leakage currents under reverse bias voltages remain a serious challenge. This current flow is dominated by field enhanced thermal emission from trap states or direct tunneling. We experimentally measure reverse-bias gate leakage currents in InAlN/AlN/GaN transistors at various temperatures and find that the conventional trap-assisted Frenkel-Poole model fails to explain the experimental data. Unlike the non-polar semiconductors Si, Ge, large polarization-induced electric fields exist in Ⅲ-nitride heterojunctions. When the large polarization fields are accounted for, a modified Frenkel-Poole model is found to accurately explain the measured data at low reverse bias voltages. At high reverse bias voltages, we identify that the direct Fowler-Nordheim tunneling mechanism dominates. The accurate identification of the gate leakage current flow mechanism in these structures leads to the extraction of several useful physical parameters, highlights the importance of polarization fields, and leads to suggestions for improved behavior.
机译:晶格匹配的InAlN / AlN / GaN高电子迁移率晶体管可提供具有吸引人的电子和热性能的高性能。对于高压应用,反向偏置电压下的栅极泄漏电流仍然是一个严峻的挑战。该电流主要由陷阱态或直接隧穿产生的场增强热辐射所支配。我们通过实验测量了InAlN / AlN / GaN晶体管在不同温度下的反向偏置栅极泄漏电流,发现传统的陷阱辅助Frenkel-Poole模型无法解释实验数据。与非极性半导体Si,Ge不同,Ⅲ型氮化物异质结中存在较大的极化感应电场。当考虑到大的极化场时,可以找到改进的Frenkel-Poole模型来准确解释在低反向偏置电压下的测量数据。在较高的反向偏置电压下,我们确定直接的Fowler-Nordheim隧穿机制占主导地位。在这些结构中对栅极泄漏电流流动机制的准确识别导致提取了一些有用的物理参数,突出了极化场的重要性,并提出了改善性能的建议。

著录项

  • 来源
    《Applied Physics Letters》 |2012年第25期|253519.1-253519.5|共5页
  • 作者单位

    Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA;

    Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA;

    Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA;

    Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA;

    Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号