首页> 外文期刊>Applied Numerical Mathematics >On the convergence of waveform relaxation methods for stiff nonlinear ordinary differential equations
【24h】

On the convergence of waveform relaxation methods for stiff nonlinear ordinary differential equations

机译:刚性非线性常微分方程波形松弛方法的收敛性

获取原文
获取原文并翻译 | 示例

摘要

This paper concerns the numerical solution of stiff initial value problems for systems of ordinary differential equations. We focus on the class of waveform relaxation methods, which was introduced by Lelarasmee et al. (1982). In waveform relaxation methods, a so-called continuous time iteration is set up, which is based on a decoupling of a given initial value problem into a number of subsystems. The continuous time iteration generates a sequence of functions that approximate the solution to the given initial value problem. After discretization of the initial value problems in the continuous time iteration, one obtains a so-called discrete time iteration. In this paper we investigate the convergence of continuous time and discrete time iteration processes. We consider discrete time iteration processes that are obtained from Runge-Kutta methods, and derive convergence results that are relevant in applications to nonlinear, nonautonomous, stiff initial value problems.
机译:本文涉及常微分方程系统的刚性初值问题的数值解。我们关注由Lelarasmee等人介绍的波形松弛方法的类别。 (1982)。在波形弛豫方法中,建立了所谓的连续时间迭代,该迭代是基于将给定初始值问题解耦到多个子系统中的。连续时间迭代会生成一系列函数,这些函数近似于给定初始值问题的解。在连续时间迭代中离散化初值问题后,获得所谓的离散时间迭代。在本文中,我们研究了连续时间和离散时间迭代过程的收敛性。我们考虑从Runge-Kutta方法获得的离散时间迭代过程,并得出与非线性,非自治,刚性初值问题的应用相关的收敛结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号