首页> 外文期刊>Applied numerical mathematics >Energy-conserving finite difference schemes for nonlinear wave equations with dynamic boundary conditions
【24h】

Energy-conserving finite difference schemes for nonlinear wave equations with dynamic boundary conditions

机译:动态边界条件的非线性波动方程节能有限差分方案

获取原文
获取原文并翻译 | 示例

摘要

In this article, we discuss the numerical analysis for the finite difference scheme of the one-dimensional nonlinear wave equations with dynamic boundary conditions. From the viewpoint of the discrete variational derivative method we propose the derivation of the energy-conserving finite difference schemes of the problem, which covers a variety of equations as widely as possible. Next, we focus our attention on the semilinear wave equation, and show the existence and uniqueness of the solution for the scheme and error estimates with the help of the inherited energy structure.
机译:在本文中,我们讨论了动态边界条件的一维非线性波方程的有限差分方案的数值分析。 从离散变分衍生物方法的观点来看,我们提出了问题的节能有限差分方案的推导,其覆盖了各种等式,尽可能广泛地覆盖各种方程。 接下来,我们将我们的注意力集中在半线性波浪方程上,并借助继承的能量结构来显示方案和误差估计的解决方案的存在和唯一性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号