首页> 外文期刊>Applied numerical mathematics >Foundations of space-time finite element methods: Polytopes, interpolation, and integration
【24h】

Foundations of space-time finite element methods: Polytopes, interpolation, and integration

机译:时空有限元方法的基础:多特,插值和集成

获取原文
获取原文并翻译 | 示例

摘要

The main purpose of this article is to facilitate the implementation of space-time finite element methods in four-dimensional space. In order to develop a finite element method in this setting, it is necessary to create a numerical foundation, or equivalently a numerical infrastructure. This foundation should include a collection of suitable elements (usually hypercubes, simplices, or closely related polytopes), numerical interpolation procedures (usually orthonormal polynomial bases), and numerical integration procedures (usually quadrature rules). It is well known that each of these areas has yet to be fully explored, and in the present article, we attempt to directly address this issue. We begin by developing a concrete, sequential procedure for constructing generic four-dimensional elements (4-polytopes). Thereafter, we review the key numerical properties of several canonical elements: the tesseract, tetrahedral prism, and pentatope. Here, we provide explicit expressions for orthonormal polynomial bases on these elements. Next, we construct fully symmetric quadrature rules with positive weights that are capable of exactly integrating high-degree polynomials, e.g. up to degree 17 on the tesseract. Finally, the quadrature rules are successfully tested using a set of canonical numerical experiments on polynomial and transcendental functions.
机译:本文的主要目的是促进四维空间中的时空有限元方法。为了在该设置中开发有限元方法,必须创建数值基础,或等效地是数值基础设施。该基础应包括一系列合适的元素(通常是超速,简单,或密切相关的多场),数值插值程序(通常是正交多项式基础)和数值积分手术(通常是正交规则)。众所周知,这些领域中的每一个尚未完全探索,并且在本文中,我们试图直接解决这个问题。我们首先开发一种具体的顺序过程,用于构建通用的四维元素(4-Polytopes)。此后,我们审查了几种规范元素的关键数值:TESSERACT,四面体棱镜和戊瓣。在这里,我们为这些元件上的正交多项式基础提供明确表达。接下来,我们用能够精确地整合高度多项式的正权重构造完全对称的正交规则,例如,高重量。在Tesseract上高达17岁。最后,使用一组规范数值实验在多项式和超越函数上成功测试了正交规则。

著录项

  • 来源
    《Applied numerical mathematics》 |2021年第8期|92-113|共22页
  • 作者单位

    Department of Aeronautics and Astronautics Massachusetts Institute of Technology Cambridge MA 02139 United States of America;

    Department of Mechanical Engineering The Pennsylvania State University University Park PA 16802 United States of America;

    Department of Ocean Engineering Texas A&M University College Station TX 77843 United States of America;

    Department of Mathematics University of Kentucky Lexington KY 40506 United States of America;

    Department of Mechanical Engineering The Pennsylvania State University University Park PA 16802 United States of America;

    Department of Aeronautics and Astronautics Massachusetts Institute of Technology Cambridge MA 02139 United States of America;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Space-time; Finite element methods; Quadrature; Tesseract; Tetrahedral prism; Pentatope;

    机译:时空;有限元方法;正交;tesseract;四面体棱镜;pentatope.;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号