首页> 外文期刊>Applied numerical mathematics >Decoupled modified characteristic finite element method with different subdomain time steps for nonstationary dual-porosity-Navier-Stokes model
【24h】

Decoupled modified characteristic finite element method with different subdomain time steps for nonstationary dual-porosity-Navier-Stokes model

机译:具有不同子域时间步骤的解耦修改特性有限元方法,用于非间断双孔隙度 - Navier-Stokes模型

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose and analyze a decoupled modified characteristic finite element method with different subdomain time steps for the mixed stabilized formulation of nonstationary dual-porosity-Navier-Stokes model. Based on partitioned time-stepping methods, the mixed system with a stabilization term is decoupled, which means that the Navier-Stokes equations and two different Darcy equations are solved independently at each time step of subdomains. In particular, we solve the Navier-Stokes equations by the modified characteristic finite element method, which overcomes the computational inefficiency caused by the nonlinear term. In order to increase the efficiency, different time steps are used to different subdomains. We prove the error convergence of solutions by mathematical induction, whose proof implies the uniform L~∞-boundedness of the fully discrete velocity solution in conduit flow. Finally, some numerical tests are presented to show efficiency of the proposed method.
机译:在本文中,我们提出并分析了具有不同子地区时间步骤的解耦改性特征有限元方法,用于非营养的双孔隙度 - 斯托克斯模型的混合稳定的制剂。 基于分区时间步进方法,具有稳定术语的混合系统分离,这意味着在子地域的每个时间步骤中独立地解决了Navier-Stokes方程和两个不同的达西方程。 特别是,我们通过改进的特征有限元方法解决了Navier-Stokes方程,其克服了非线性期限引起的计算效率。 为了提高效率,不同的时间步长用于不同的子域。 我们通过数学诱导证明了解决方案的错误收敛性,其证据意味着在导管流动中完全离散速度溶液的均匀L〜∞界。 最后,提出了一些数值测试以显示所提出的方法的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号