首页> 外文期刊>Applied numerical mathematics >Novel operational matrices for solving 2-dim nonlinear variable order fractional optimal control problems via a new set of basis functions
【24h】

Novel operational matrices for solving 2-dim nonlinear variable order fractional optimal control problems via a new set of basis functions

机译:通过新的基础函数求解2-DIM非线性可变阶分数最佳控制问题的新型操作矩阵

获取原文
获取原文并翻译 | 示例

摘要

This paper provides an effective method for a class of 2-dim nonlinear variable order fractional optimal control problems (2DNVOFOCP). The technique is based on the new class of basis functions namely the generalized shifted Legendre polynomials. The dynamic constraint is described by a nonlinear variable order fractional differential equation where the fractional derivative is in the sense of Caputo. The 2-dim Gauss-Legendre quadrature rule together with the Lagrange multipliers method are utilized to find the solutions of the given 2DNVOFOCP. The convergence analysis of the presented method is investigated. The examined numerical examples manifest highly accurate results.
机译:本文为一类2-DIM非线性可变订单分数最优控制问题提供了一种有效的方法(2DNVOFOCP)。 该技术基于新的基础函数,即广义移位的传奇多项式。 动态约束由非线性可变顺序分数微分方程描述,其中分数衍生物处于Caputo的意义上。 使用2-DIM高声 - Legendre正交规则与Lagrange乘法器方法一起用于找到给定的2dnvofocp的解决方案。 研究了所提出的方法的收敛分析。 检查的数值例表现出高度准确的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号