首页> 外文期刊>Applied numerical mathematics >Primal-dual fixed point algorithm based on adapted metric method for solving convex minimization problem with application
【24h】

Primal-dual fixed point algorithm based on adapted metric method for solving convex minimization problem with application

机译:基于适应度量方法的原始 - 双重定点算法解决凸起最小化问题的应用

获取原文
获取原文并翻译 | 示例

摘要

Optimization problems involving the sum of three convex functions have received much attention in recent years, where one is differentiable with Lipschitz continuous gradient, one is composed of a linear operator and the other is proximity friendly. The primal-dual fixed point algorithm is a simple and effective algorithm for such problems. To exploit the second-order derivatives information of the objective function, we propose a primal-dual fixed point algorithm with an adapted metric method. The proposed algorithm is derived from the idea of establishing a generally fixed point formulation for the solution of the considered problem. Under mild conditions on the iterative parameters, we prove the convergence of the proposed algorithm. Further, we establish the ergodic convergence rate in the sense of primal-dual gap and also derive the linear convergence rate with additional conditions. Numerical experiments on image deblurring problems show that the proposed algorithm outperforms other state-of-the-art primal-dual algorithms in terms of the number of iterations.
机译:近年来,涉及三个凸函数的总和的优化问题已经受到了很多关注,其中一个人与Lipschitz连续梯度可差,一个由线性操作员组成,另一个是接近友好。原始 - 双重定点算法是一种简单有效的算法的这种问题。为了利用目标函数的二阶衍生物信息,我们提出了一种具有适应性的公制方法的原始双重定点算法。所提出的算法源自建立用于考虑问题的解决方案的大致固定点配方的想法。在迭代参数的温和条件下,我们证明了所提出的算法的融合。此外,我们在原始 - 双间隙的感觉中建立了ergodic收敛速率,并且还具有额外条件的线性会聚速率。图像去掩饰问题的数值实验表明,所提出的算法在迭代次数方面优于其他最新的原始双算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号