首页> 外文期刊>Applied numerical mathematics >A second-order implicit difference scheme for the nonlinear time-space fractional Schroedinger equation
【24h】

A second-order implicit difference scheme for the nonlinear time-space fractional Schroedinger equation

机译:非线性时空分数施罗德格方程的二阶隐式差分方案

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we develop an implicit difference method for solving the nonlinear time-space fractional Schrodinger equation. The scheme is constructed by using the L2-1_σ formula to approximate the Caputo fractional derivative, while the weighted and shifted Gruenwald formula is adopted for the spatial discretization. The stability and unique solvability of the difference scheme are analyzed in detail. Moreover, we prove that the numerical solution is convergent with second-order accuracy in both temporal and spatial directions. Finally, a linearized iterative algorithm is provided and some numerical tests are presented to validate our theoretical results.
机译:在本文中,我们开发了一种求解非线性时空分数Schrodinger方程的隐式差分方法。通过使用L2-1σ公式来构造该方案以近似Caputo分数衍生物,而加权和移位的Gruenwald公式用于空间离散化。详细分析了差异方案的稳定性和独特的可解性。此外,我们证明了数值解决方案在时间和空间方向上以二阶精度进行会聚。最后,提供了一种线性化迭代算法,并提出了一些数值测试以验证我们的理论结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号