首页> 外文期刊>Applied numerical mathematics >Convergence analysis of an iterative numerical algorithm for solving nonlinear stochastic Ito-Volterra integral equations with m-dimensional Brownian motion
【24h】

Convergence analysis of an iterative numerical algorithm for solving nonlinear stochastic Ito-Volterra integral equations with m-dimensional Brownian motion

机译:求解m维布朗运动的非线性随机Ito-Volterra积分方程的迭代数值算法的收敛性分析

获取原文
获取原文并翻译 | 示例

摘要

In this article, a numerical technique based on a combination of the Picard iteration method and hat basis functions to solve nonlinear stochastic Ito-Volterra integral equations with m-dimensional Brownian motion is proposed. The existence and uniqueness theorem for the solution of this class of Ito-Volterra integral equations is proved. Also, convergence analysis of the suggested method is investigated in details. Finally, some numerical examples are provided to demonstrate the accuracy of the proposed method and guarantee the theoretical results. (C) 2019 IMACS. Published by Elsevier B.V. All rights reserved.
机译:本文提出了一种基于Picard迭代方法和hat基函数的数值技术,用于求解具有m维布朗运动的非线性随机Ito-Volterra积分方程。证明了这类Ito-Volterra积分方程解的存在性和唯一性定理。此外,详细研究了建议方法的收敛性分析。最后,通过数值算例验证了所提方法的准确性,并保证了理论结果。 (C)2019年IMACS。由Elsevier B.V.发布。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号