首页> 美国政府科技报告 >Convergence properties of iterative algorithms for solving the nodal diffusion equations
【24h】

Convergence properties of iterative algorithms for solving the nodal diffusion equations

机译:求解节点扩散方程的迭代算法的收敛性

获取原文

摘要

We drive the five point form of the nodal diffusion equations in two-dimensional Cartesian geometry and develop three iterative schemes to solve the discrete-variable equations: the unaccelerated, partial Successive Over Relaxation (SOR), and the full SOR methods. By decomposing the iteration error into its Fourier modes, we determine the spectral radius of each method for infinite medium, uniform model problems, and for the unaccelerated and partial SOR methods for finite medium, uniform model problems. Also for the two variants of the SOR method we determine the optimal relaxation factor that results in the smallest number of iterations required for convergence. Our results indicate that the number of iterations for the unaccelerated and partial SOR methods is second order in the number of nodes per dimension, while, for the full SOR this behavior is first order, resulting in much faster convergence for very large problems. We successfully verify the results of the spectral analysis against those of numerical experiments, and we show that for the full SOR method the linear dependence of the number of iterations on the number of nodes per dimension is relatively insensitive to the value of the relaxation parameter, and that it remains linear even for heterogenous problems. 14 refs., 1 fig.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号