首页> 外文期刊>Applied numerical mathematics >An unconstrained global optimization framework for real symmetric eigenvalue problems
【24h】

An unconstrained global optimization framework for real symmetric eigenvalue problems

机译:实对称特征值问题的无约束全局优化框架

获取原文
获取原文并翻译 | 示例

摘要

In this work, we interpret real symmetric eigenvalue problems in an unconstrained global optimization framework. More precisely, given two N x N matrices, a symmetric matrix A, and a symmetric positive definite matrix B, we propose and analyze a nonconvex functional F whose local minimizers are, indeed, global minimizers. These minimizers correspond to eigenvectors of the generalized eigenvalue problem Ax = lambda Bx associated with its smallest eigenvalue. To minimize the proposed functional F, we consider the gradient descent method and show its global convergence. Furthermore, we provide explicit error estimates for eigenvalues and eigenvectors at the k(th) iteration of the method in terms of the gradient of F at the k(th) iterate x(k). At the end, we provide a few numerical experiments to confirm our analysis and to compare with other methods, which reveals interesting numerical aspects of our proposed model. (C) 2019 IMACS. Published by Elsevier B.V. All rights reserved.
机译:在这项工作中,我们在不受约束的全局优化框架中解释了真实的对称特征值问题。更准确地说,给定两个N x N矩阵,一个对称矩阵A和一个对称正定矩阵B,我们提出并分析了一个非凸函数F,其局部最小化子实际上是全局最小化子。这些最小化子对应于与其最小特征值相关的广义特征值问题Ax = lambda Bx的特征向量。为了使建议的函数F最小,我们考虑了梯度下降法并显示了其全局收敛性。此外,我们根据第k个迭代x(k)处F的梯度,为方法的第k个迭代提供了特征值和特征向量的显式误差估计。最后,我们提供了一些数值实验来确认我们的分析并与其他方法进行比较,从而揭示了我们提出的模型的有趣数值方面。 (C)2019年IMACS。由Elsevier B.V.发布。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号