首页> 外文期刊>Applied numerical mathematics >Superconvergence analysis and two-grid algorithms of pseudostress-velocity MFEM for optimal control problems governed by Stokes equations
【24h】

Superconvergence analysis and two-grid algorithms of pseudostress-velocity MFEM for optimal control problems governed by Stokes equations

机译:拟应力速度MFEM的超收敛分析和两网格算法求解由Stokes方程控制的最优控制问题

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a two-grid mixed finite element scheme for distributed optimal control problems governed by stationary Stokes equations. In order to avoid the difficulty caused by the symmetry constraint of the stress tensor, we use pseudostress to replace it. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control variable is approximated by piecewise constant functions. We first prove that the difference between the interpolation and the numerical solution has superconvergence property for the control u with order h(2). Then, using the postprocessing technique, we derive a second-order superconvergent result for the control u. Next, we construct a two-grid mixed finite element scheme and derive a priori error estimates. Finally, a numerical experiment is presented to verify the theoretical results. (C) 2018 IMACS. Published by Elsevier B.V. All rights reserved.
机译:在本文中,我们提出了由平稳Stokes方程控制的分布式最优控制问题的两网格混合有限元方案。为了避免应力张量的对称约束所造成的困难,我们使用伪应力来代替它。状态和共态由最低阶Raviart-Thomas混合有限元空间近似,而控制变量由分段常数函数近似。我们首先证明,插值与数值解之间的差对于具有阶h(2)的控制u具有超收敛性。然后,使用后处理技术,我们得出控制u的二阶超收敛结果。接下来,我们构造一个两网格混合有限元方案,并得出先验误差估计。最后,通过数值实验验证了理论结果。 (C)2018年IMACS。由Elsevier B.V.发布。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号