首页> 外文期刊>Applied numerical mathematics >Cache efficient data structures and algorithms for adaptive multidimensional multilevel finite element solvers
【24h】

Cache efficient data structures and algorithms for adaptive multidimensional multilevel finite element solvers

机译:自适应多维多层有限元求解器的高速缓存有效数据结构和算法

获取原文
获取原文并翻译 | 示例

摘要

Due to the increasing gap between speed of CPU and speed of access to memory the latter is often the main bottleneck in modern high performance computing. Hierarchical cache architectures designed to avoid this problem conflict with the rather irregular memory access of modern adaptive multilevel algorithms which cause frequent cache misses.rnIn this paper we present an algorithm for an adaptive multilevel FE solver that reduces random access and jumps in address space considerably. The grid is based on a fully adaptive space tree based on a d-dimensional hypercube where d is an arbitrary positive integer. The individual cells in the hierarchical space tree are ordered by a space-filling curve, the d-dimensional Peano curve, and the data processing is organized by a small set of stacks. Because access to a stack always stays local in memory, cache misses are very rare. The organizational overhead is very small. Only one bit per node to define the geometry of the domain and one bit per node to specify the refinement structure are needed allowing the solution of large-scale problems.
机译:由于CPU速度和内存访问速度之间的差距越来越大,后者通常是现代高性能计算的主要瓶颈。旨在避免此问题的分层缓存体系结构与现代自适应多级算法的相当不规则的内存访问冲突,后者会导致频繁的高速缓存未命中。在本文中,我们提出了一种自适应多级有限元求解器的算法,该算法可减少随机访问并显着减少地址空间中的跳转。网格基于基于d维超立方体的完全自适应空间树,其中d是任意正整数。分层空间树中的各个单元由空间填充曲线,d维Peano曲线排序,并且数据处理由一小组堆栈组织。由于对堆栈的访问始终保留在内存中,因此很少会发生高速缓存未命中的情况。组织开销很小。每个节点只需要一位来定义域的几何形状,每个节点只需要一位来指定精细结构,就可以解决大规模问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号