首页> 外文期刊>Applied numerical mathematics >Analysis of the coupling of BEM, FEM and mixed-FEM for a two-dimensional fluid-solid interaction problem
【24h】

Analysis of the coupling of BEM, FEM and mixed-FEM for a two-dimensional fluid-solid interaction problem

机译:二维流固耦合问题的BEM,FEM和混合FEM耦合分析

获取原文
获取原文并翻译 | 示例

摘要

In this paper we consider a fluid-solid interaction problem posed in the plane. We employ a mixed variational formulation in the obstacle, in which the Cauchy stress tensor and the rotation are the only unknowns. This new mixed formulation is coupled, through suitable transmission conditions on the wet interface, with a Helmholtz equation satisfied by the pressure of the fluid in the unbounded domain. We use a traditional primal variational formulation in this part of the domain and incorporate the far field information through boundary integral equations. We approximate the resulting weak formulation by a Galerkin scheme based on PEERS in the solid and on a FEM-BEM approach in the fluid part. We show that our scheme is uniquely solvable and convergent, and then provide optimal error estimates. Finally, we illustrate our analysis with some computational experiments.
机译:在本文中,我们考虑了平面中的流固耦合问题。我们在障碍物中采用混合变分公式,其中柯西应力张量和旋转是唯一未知数。通过在湿界面上合适的传输条件,这种新的混合配方与Helmholtz方程耦合,该方程满足无界域中流体的压力。我们在域的这一部分中使用传统的原始变分公式,并通过边界积分方程式合并远场信息。我们基于固体中的PEERS和流体部分中的FEM-BEM方法,通过基于Galerkin方案的近似弱公式。我们证明了我们的方案是唯一可解和收敛的,然后提供了最佳的误差估计。最后,我们通过一些计算实验来说明我们的分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号