首页> 外文期刊>Applied numerical mathematics >A Sparse-sparse Iteration For Computing A Sparse Incomplete Factorization Of The Inverse Of An Spd Matrix
【24h】

A Sparse-sparse Iteration For Computing A Sparse Incomplete Factorization Of The Inverse Of An Spd Matrix

机译:计算Spd矩阵逆的稀疏不完全因式分解的稀疏稀疏迭代

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a method via sparse-sparse iteration for computing a sparse incomplete factorization of the inverse of a symmetric positive definite matrix is proposed. The resulting factorized sparse approximate inverse is used as a preconditioner for solving symmetric positive definite linear systems of equations by using the preconditioned conjugate gradient algorithm. Some numerical experiments on test matrices from the Harwell-Boeing collection for comparing the numerical performance of the presented method with one available well-known algorithm are also given.
机译:提出了一种基于稀疏稀疏迭代的对称正定矩阵逆的稀疏不完全因式分解方法。通过使用预处理的共轭梯度算法,将所得的分解后的稀疏近似逆用作预处理器,以求解对称正定线性方程组。还进行了一些来自Harwell-Boeing集合的测试矩阵的数值实验,以比较该方法与一种可用的众所周知算法的数值性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号