首页> 外文期刊>Applied numerical mathematics >Non-stationary subdivision schemes for surface interpolation based on exponential polynomials
【24h】

Non-stationary subdivision schemes for surface interpolation based on exponential polynomials

机译:基于指数多项式的曲面插值非平稳细分方案

获取原文
获取原文并翻译 | 示例

摘要

This paper is concerned with non-stationary interpolatory subdivision schemes that can reproduce a large class of (complex) exponential polynomials. It enables our scheme to exactly reproduce the parametric surfaces such as torus and spheres. The subdivision rules are obtained by using the reproducing property of exponential polynomials which constitute a shift-invariant space S. In this study, we are particularly interested in the schemes based on the known butterfly-shaped stencils, proving that these schemes have the same smoothness and approximation order as the classical Butterfly interpolatory scheme.
机译:本文涉及可以重现一大类(复数)指数多项式的非平稳插值细分方案。它使我们的方案能够精确地再现诸如曲面和球形之类的参数曲面。通过使用构成移位不变空间S的指数多项式的重现性来获得细分规则。在这项研究中,我们对基于已知蝴蝶形模具的方案特别感兴趣,证明这些方案具有相同的平滑度和近似阶作为经典的蝴蝶插值方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号