首页> 外文期刊>Applied numerical mathematics >A well-balanced shock-capturing hybrid finite volume-finite difference numerical scheme for extended 1D Boussinesq models
【24h】

A well-balanced shock-capturing hybrid finite volume-finite difference numerical scheme for extended 1D Boussinesq models

机译:一维Boussinesq模型的平衡振动捕捉有限体积有限差分数值格式。

获取原文
获取原文并翻译 | 示例

摘要

A formally fourth-order well-balanced hybrid finite volume/difference (FV/FD) numerical scheme for approximating the conservative form of two 1D extended Boussinesq systems is presented. The FV scheme is of the Godunov type and utilizes Roe's approximate Riemann solver for the advective fluxes along with well-balanced topography source term upwinding, while FD discretizations are applied to the dispersive terms in the systems. Special attention is given to the accurate numerical treatment of moving wet/dry fronts. To access the performance and applicability, by exposing the merits and differences of the two formulations, the numerical models have been applied to idealized and challenging experimental test cases. Special attention is paid in comparing both Boussinesq models to the nonlinear shallow water equations (NSWE) in the simulation of the experimental results. The outcomes from this work confirm that, although the NSWE can be sufficient in some cases to predict the general characteristics of propagating waves, the two Boussinesq models provided considerable more accurate results for highly dispersive waves over increasing water depths.
机译:提出了一种近似四阶一维扩展Boussinesq系统保守形式的形式良好的四阶均衡平衡有限体积/差分(FV / FD)数值方案。 FV方案是Godunov类型的方案,它利用Roe的近似Riemann求解器求解对流通量,同时平衡地势源项向上平衡,而FD离散化应用于系统中的离散项。特别注意移动的湿/干锋面的精确数值处理。为了获得性能和适用性,通过暴露两种配方的优缺点,将数值模型应用于理想且具有挑战性的实验用例。在仿真实验结果时,需要特别注意将两个Boussinesq模型与非线性浅水方程(NSWE)进行比较。这项工作的结果证实,尽管在某些情况下NSWE足以预测传播波的一般特征,但两个Boussinesq模型对于水深增加时高度分散的波提供了相当准确的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号