首页> 外文期刊>Applied numerical mathematics >A radial basis collocation method for pricing American options under regime-switching jump-diffusion models
【24h】

A radial basis collocation method for pricing American options under regime-switching jump-diffusion models

机译:政权转换跳跃-扩散模型下的美式期权定价的径向基配置法

获取原文
获取原文并翻译 | 示例

摘要

The Markovian regime-switching paradigm has become one of the prevailing models in mathematical finance. It is now widely known that under the regime-switching model, the market is incomplete and so the option valuation problem in this framework will be a challenging task of considerable importance for market practitioners and academia. Our concern here is to solve the pricing problem for American options in a Markov-modulated jump-diffusion model, based on a meshfree approach using radial basis functions. In this respect, we solve a set of coupled partial integro-differential equations with the free boundary feature by expanding the solution vector in terms of radial basis functions and then collocating the resulting system of equations at some pre-specified points. This method exhibits a superlinear order of convergence in space and a linear order in time and also has an acceptable speed in comparison with some existing methods. We will compare our results with some recently proposed approaches.
机译:马尔可夫政权转换范式已成为数学金融领域的主流模型之一。众所周知,在政权转换模式下,市场是不完整的,因此在该框架内的期权评估问题将是一项具有挑战性的任务,对市场从业者和学术界都具有重要意义。我们在这里的关注点是,在基于马尔可夫调制的跳扩散模型中,基于使用径向基函数的无网格方法,解决了美式期权的定价问题。在这方面,我们通过按径向基函数扩展解矢量,然后将所得方程组并入某些预先指定的点,从而求解具有自由边界特征的一组耦合的局部微分方程组。与某些现有方法相比,该方法表现出空间收敛的超线性顺序和时间上的线性顺序,并且具有可接受的速度。我们将我们的结果与最近提出的一些方法进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号