...
首页> 外文期刊>Applied numerical mathematics >Inflow-implicit/outflow-explicit finite volume methods for solving advection equations
【24h】

Inflow-implicit/outflow-explicit finite volume methods for solving advection equations

机译:求解对流方程的内隐/外显式有限体积方法

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We introduce a new class of methods for solving non-stationary advection equations. The new methods are based on finite volume space discretizations and a semi-implicit discretization in time. Its basic idea is that outflow from a cell is treated explicitly while inflow is treated implicitly. This is natural, since we know what is outflowing from a cell at the old time step but we leave the method to resolve a system of equations determined by the inflows to a cell to obtain the solution values at the new time step. The matrix of the system in our inflow-implicit/outflow-explicit (IIOE) method is determined by the inflow fluxes which results in an M-matrix yielding favorable stability properties for the scheme. Since the explicit (outflow) part is not always dominated by the implicit (inflow) part and thus some oscillations can occur, we build a stabilization based on the upstream weighted averages with coefficients determined by the flux-corrected transport approach [2,19] yielding high resolution versions, S~1IIOE and S~2IIOE, of the basic scheme. We prove that our new method is exact for any choice of a discrete time step on uniform rectangular grids in the case of constant velocity transport of quadratic functions in any dimension. We also show its formal second order accuracy in space and time for 1D advection problems with variable velocity. Although designed for non-divergence free velocity fields, we show that the basic IIOE scheme is locally mass conservative in case of divergence free velocity. Finally, we show L~2-stability for divergence free velocity in 1D on periodic domains independent of the choice of the time step, and L~∞-stability for the stabilized high resolution variant of the scheme. Numerical comparisons with the purely explicit schemes like the fully explicit up-wind and the Lax-Wendroff schemes were discussed in [13] and [14] where the basic IIOE was originally introduced. There it has been shown that the new scheme has good properties with respect to a balance of precision and CPU time related to a possible choice of larger time steps in our scheme. In this contribution we compare the new scheme and its stabilized variants with widely used fully implicit up-wind method. In this comparison our new schemes show better behavior with respect to stability and precision of computations for time steps several times exceeding the CFL stability condition. Our new stabilized methods are L~∞ stable, second order accurate for any smooth solution and with accuracy of order 2/3 for solutions with moving discontinuities. This is opposite to implicit up-wind schemes which have accuracy order 1/2 only. All these properties hold for any choice of time step thus making our new method attractive for practical applications.
机译:我们介绍了一类新的方法来求解非平稳对流方程。新方法基于有限体积空间离散化和时间上的半隐式离散化。其基本思想是显式处理来自单元的流出,而隐式处理流入。这是自然的,因为我们知道在旧的时间步从单元中流出的是什么,但是我们留下了一种方法来求解由流入单元的流入确定的方程组,从而在新的时间步处获得解值。我们的流入隐式/流出显式(IIOE)方法中的系统矩阵由流入通量确定,这导致M矩阵为该方案产生有利的稳定性。由于显性(流出)部分并不总是由隐性(流入)部分控制,因此可能会发生一些振荡,因此我们基于上游加权平均值构建了一个稳定系数,该系数由通量校正的输运方法确定[2,19]。产生基本方案的高分辨率版本S〜1IIOE和S〜2IIOE。我们证明了我们的新方法对于在任意维度上以二次函数进行恒速传输的情况下,对于均匀矩形网格上离散时间步长的任何选择都是正确的。我们还显示了它在速度和速度方面对一维对流问题的形式二阶空间和时间精度。尽管是为非散度自由速度场设计的,但我们表明基本IIOE方案在散度自由速度的情况下是局部质量保守的。最后,我们显示了与周期无关的周期性域上一维散度自由度的L〜2稳定性,以及该方案的稳定高分辨率变量的L〜∞稳定性。在最初引入基本IIOE的文献[13]和[14]中讨论了与纯粹显式方案(如完全显式迎风方案和Lax-Wendroff方案)的数值比较。事实表明,新方案在精度和CPU时间平衡方面具有良好的性能,这与我们方案中可能选择的较大时间步长有关。在此贡献中,我们将新方案及其稳定的变体与广泛使用的完全隐式迎风方法进行了比较。在这种比较中,我们的新方案在稳定性和精确度方面表现出更好的性能,时间步长超过CFL稳定性条件。我们的新稳定方法具有L〜∞稳定性,对于任何平滑解都是二阶精度,对于运动不连续性的解则具有2/3阶精度。这与仅具有精度等级1/2的隐式迎风方案相反。所有这些特性可在任何时间步长中保持不变,因此使我们的新方法对实际应用具有吸引力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号