首页> 外文期刊>Applied numerical mathematics >Implicit-explicit multistep methods for general two-dimensional nonlinear Schroedinger equations
【24h】

Implicit-explicit multistep methods for general two-dimensional nonlinear Schroedinger equations

机译:二维非线性Schroedinger方程的隐式-显式多步方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, implicit-explicit multistep Galerkin methods are studied for two-dimensional nonlinear Schrodinger equations and coupled nonlinear Schrodinger equations. The spatial discretization is based on Galerkin method using linear and quadratic basis functions on triangular and rectangular finite elements. And the implicit-explicit multistep method is used for temporal discretization. Linear and nonlinear numerical tests are presented to verify the validity and efficiency of the numerical methods. The numerical results record that the optimal order of the error in L_2 and L_∞ norm can be reached.
机译:本文研究了二维非线性薛定inger方程和耦合非线性薛定inger方程的隐式-显式多步Galerkin方法。空间离散化基于Galerkin方法,在三角形和矩形有限元上使用线性和二次基函数。隐式-显式多步法用于时间离散化。进行了线性和非线性数值测试,以验证数值方法的有效性和有效性。数值结果表明,可以达到L_2和L_∞范数误差的最优顺序。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号