首页> 外文期刊>Applied numerical mathematics >A path-conservative Osher-type scheme for axially symmetric compressible flows in flexible visco-elastic tubes
【24h】

A path-conservative Osher-type scheme for axially symmetric compressible flows in flexible visco-elastic tubes

机译:挠性粘弹性管中轴对称可压缩流的守恒Osher型格式

获取原文
获取原文并翻译 | 示例

摘要

Flexible tubes are widely used in modern industrial hydraulic systems as connections between different components like valves, pumps and actuators. For the design and the analysis of the temporal behavior of a hydraulic system, one therefore needs an accurate mathematical model that describes the fluid flow in a compliant duct. Hence, in this paper we want to model the fluid-structure-interaction (FSI) problem given by the axially symmetric flow of a compressible barotropic fluid that flows through flexible tubes made of vulcanized rubber. The material of the tube can be described by using a visco-elastic rheology, which takes into account the strain relaxation of the material. The resulting mathematical model consists in a one-dimensional system of nonlinear hyperbolic partial differential equations (PDE) with non-conservative products and algebraic source terms. To solve this system numerically, we apply the DOT method, which is a generalized path-conservative Osher-type Riemann solver for conservative and non-conservative hyperbolic PDE recently proposed in and. We provide numerical evidence that the proposed DOT Riemann solver is well-balanced for the governing PDE system under consideration. The method is compared to available quasi-exact solutions of the Riemann problem in the case of an elastic wall described by the Laplace law. It is also compared to available experimental data and exact solutions obtained in the frequency domain for a linear visco-elastic wall behavior. In all cases under investigation the proposed path-conservative finite volume scheme based on the DOT Riemann solver is able to produce very accurate results.
机译:挠性管广泛用于现代工业液压系统中,作为阀门,泵和执行器等不同组件之间的连接。因此,为了设计和分析液压系统的时间特性,需要一个精确的数学模型来描述顺应性管道中的流体流动。因此,在本文中,我们要对流经硫化橡胶制成的挠性管的可压缩正压流体的轴对称流给出的流固耦合问题进行建模。管的材料可以通过使用粘弹性流变学来描述,该粘弹性流变学考虑了材料的应变松弛。生成的数学模型包含一维系统,该系统具有非保守乘积和代数源项的非线性双曲型偏微分方程(PDE)。为了用数值方法求解该系统,我们采用了DOT方法,这是最近在and中提出的用于保守和非保守双曲PDE的广义路径守恒Osher型Riemann求解器。我们提供了数值证据,表明所提出的DOT Riemann求解器对于正在考虑的主控PDE系统是均衡的。在拉普拉斯定律描述的弹性壁的情况下,将该方法与黎曼问题的可用准精确解进行了比较。还将它与可用的实验数据和在频域中获得的线性粘弹性壁行为的精确解进行比较。在所研究的所有情况下,基于DOT Riemann求解器的拟议路径守恒有限体积方案都能产生非常准确的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号