首页> 外文期刊>Applied numerical mathematics >On fractional backward differential formulas for fractional delay differential equations with periodic and anti-periodic conditions
【24h】

On fractional backward differential formulas for fractional delay differential equations with periodic and anti-periodic conditions

机译:具有周期和反周期条件的分数阶时滞微分方程的分数向后微分公式

获取原文
获取原文并翻译 | 示例

摘要

In this paper, fractional backward differential formulas (FBDF) are presented for the numerical solution of fractional delay differential equations (FDDEs) of the form λ_n_0~cD_t~any(t)+λ_(n-1)_0~cD_t~a_(n-1)y(t)+…+λ_1_0~cD_t~a_1y(t)+λ_(n+1)y(t-τ)=f(t),t∈[0,T], where λ_1∈R(u=1,…,n+1),λ_(n+1)≠0,0≤a_1 0, in Caputo sense. Our investigation is focused on stability properties of the numerical methods and we determine stability regions for the FDDEs. Also we find the Green's functions for this equation corresponding to periodic/anti-periodic conditions in terms of the functions of Mittag Leffler type. Numerical tests are presented to confirm the strength of the approach under investigation.
机译:本文针对分数延迟微分方程(FDDE)的λ_n_0〜cD_t〜any(t)+λ_(n-1)_0〜cD_t〜a_(n -1)y(t)+ ... +λ_1_0〜cD_t〜a_1y(t)+λ_(n + 1)y(t-τ)= f(t),t∈[0,T],其中λ_1∈R(在Caputo的意义上,u = 1,…,n + 1),λ_(n + 1)≠0,0≤a_1 0。我们的研究集中在数值方法的稳定性上,我们确定了FDDE的稳定性区域。我们还根据Mittag Leffler类型的函数找到了对应于周期/反周期条件的该方程的格林函数。进行了数值测试,以确认所研究方法的强度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号