首页> 外文期刊>Applied numerical mathematics >Numerical pricing of American options under two stochastic factor models with jumps using a meshless local Petrov-Galerkin method
【24h】

Numerical pricing of American options under two stochastic factor models with jumps using a meshless local Petrov-Galerkin method

机译:使用无网格局部Petrov-Galerkin方法的带有跳跃的两个随机因子模型下的美式期权的数值定价

获取原文
获取原文并翻译 | 示例

摘要

The most recent update of financial option models is American options under stochastic volatility models with jumps in returns (SVJ) and stochastic volatility models with jumps in returns and volatility (SVCJ). To evaluate these options, mesh-based methods are applied in a number of papers but it is well-known that these methods depend strongly on the mesh properties which is the major disadvantage of them. Therefore, we propose the use of the meshless methods to solve the aforementioned options models, especially in this work we select and analyze one scheme of them, named local radial point interpolation (LRPI) based on Wendland's compactly supported radial basis functions (WCS-RBFs) with C~6 , C~4 and C~2 smoothness degrees. The LRPI method which is a special type of meshless local Petrov-Galerkin method (MLPG), offers several advantages over the mesh-based methods, nevertheless it has never been applied to option pricing, at least to the very best of our knowledge. These schemes are the truly meshless methods, because, a traditional non-overlapping continuous mesh is not required, neither for the construction of the shape functions, nor for the integration of the local sub-domains. In this work, the American option which is a free boundary problem, is reduced to a problem with fixed boundary using a Richardson extrapolation technique. Then the implicit-explicit (IMEX) time stepping scheme is employed for the time derivative. Numerical experiments are presented showing that the proposed approaches are extremely accurate and fast.
机译:金融期权模型的最新更新是具有收益率跳跃(SVJ)的随机波动率模型和具有收益率和波动率跳跃(SVCJ)的随机波动率模型的美国期权。为了评估这些选项,许多论文中都采用了基于网格的方法,但是众所周知,这些方法在很大程度上取决于网格的属性,这是它们的主要缺点。因此,我们建议使用无网格方法来解决上述选择模型,特别是在这项工作中,我们选择并分析了其中的一种方案,即基于Wendland的紧密支持的径向基函数(WCS-RBF)的局部径向点插值(LRPI) )具有C〜6,C〜4和C〜2的平滑度。 LRPI方法是一种特殊的无网格局部Petrov-Galerkin方法(MLPG),与基于网格的方法相比,具有许多优势,但是至少就我们所知,它从未应用于期权定价。这些方案是真正的无网格方法,因为不需要传统的不重叠的连续网格,无论是形状函数的构造还是局部子域的集成。在这项工作中,使用理查森外推技术将作为自由边界问题的美式期权简化为具有固定边界的问题。然后将隐式显式(IMEX)时间步长方案用于时间导数。数值实验表明,所提出的方法是非常准确和快速的。

著录项

  • 来源
    《Applied numerical mathematics》 |2017年第5期|252-274|共23页
  • 作者单位

    Department of Computer Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, G.C. Tehran, Iran,Department of Cognitive Modeling, Institute for Cognitive and Brain Sciences, Shahid Beheshti University, G.C. Tehran, Iran;

    Department of Computer Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, G.C. Tehran, Iran,Department of Cognitive Modeling, Institute for Cognitive and Brain Sciences, Shahid Beheshti University, G.C. Tehran, Iran;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Stochastic volatility; American option; Merton jump diffusion; Meshless weak form; Wendland functions;

    机译:随机波动;美式期权;默顿跳跃扩散;无网格的弱形式;温德兰职能;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号