首页> 外文期刊>Applied numerical mathematics >Convergence estimates for multigrid algorithms with SSC smoothers and applications to overlapping domain decomposition
【24h】

Convergence estimates for multigrid algorithms with SSC smoothers and applications to overlapping domain decomposition

机译:具有SSC平滑器的多网格算法的收敛估计及其在重叠域分解中的应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper we study convergence estimates for a multigrid algorithm with smoothers of successive subspace correction (SSC) type, applied to symmetric elliptic PDEs under no regularity assumptions on the solution of the problem. The proposed analysis provides three main contributions to the existing theory. The first novel contribution of this study is a convergence bound that depends on the number of multigrid smoothing iterations. This result is obtained under no regularity assumptions on the solution of the problem. A similar result has been shown in the literature for the cases of full regularity and partial regularity assumptions. Second, our theory applies to local refinement applications with arbitrary level hanging nodes. More specifically, for the smoothing algorithm we provide subspace decompositions that are suitable for applications where the multigrid spaces are defined on finite element grids with arbitrary level hanging nodes. Third, global smoothing is employed on the entire multigrid space with hanging nodes. When hanging nodes are present, existing multigrid strategies advise to carry out the smoothing procedure only on a subspace of the multigrid space that does not contain hanging nodes. However, with such an approach, if the number of smoothing iterations is increased, convergence can improve only up to a saturation value. Global smoothing guarantees an arbitrary improvement in the convergence when the number of smoothing iterations is increased. Numerical results are also included to support our theoretical findings. (C) 2018 IMACS. Published by Elsevier B.V. All rights reserved.
机译:在本文中,我们研究了在没有规则性假设的情况下将具有连续子空间校正(SSC)类型的平滑器的多网格算法应用于对称椭圆PDE的收敛估计。所提出的分析为现有理论提供了三个主要贡献。这项研究的第一个新颖贡献是收敛边界,它取决于多网格平滑迭代的次数。在没有规律性假设的情况下获得该结果。对于完全正则性和部分正则性假设的情况,文献中也显示了类似的结果。其次,我们的理论适用于具有任意级别的悬挂节点的局部优化应用。更具体地说,对于平滑算法,我们提供子空间分解,适用于在具有任意级别的悬挂节点的有限元网格上定义多网格空间的应用。第三,在具有悬挂节点的整个多网格空间中采用全局平滑。当存在悬挂节点时,现有的多网格策略建议仅在不包含悬挂节点的多网格空间的子空间上执行平滑过程。但是,使用这种方法,如果增加平滑迭代的次数,则收敛只能提高到饱和值。当增加平滑迭代次数时,全局平滑保证收敛性的任意改善。数值结果也包括在内以支持我们的理论发现。 (C)2018年IMACS。由Elsevier B.V.发布。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号