首页> 外文期刊>Applied numerical mathematics >A block-centered finite difference method for the distributed-order time-fractional diffusion-wave equation
【24h】

A block-centered finite difference method for the distributed-order time-fractional diffusion-wave equation

机译:分布阶数时间分数扩散波方程的块中心有限差分法

获取原文
获取原文并翻译 | 示例

摘要

In this article, a block-centered finite difference method for the distributed-order time fractional diffusion-wave equation with Neumann boundary condition is introduced and analyzed. The unconditional stability and the global convergence of the scheme are proved rigorously. Some a priori estimates of discrete norms with optimal order of convergence O (Delta t(1+sigma/2) + h(2) + k(2) + sigma(2)) both for pressure and velocity are established on non-uniform rectangular grids, where Delta t, h, k and sigma are the step sizes in time, space in x- and y-direction, and distributed order. Moreover, the applicability and accuracy of the scheme are demonstrated by numerical experiments to support our theoretical analysis. (C) 2018 IMACS. Published by Elsevier B.V. All rights reserved.
机译:本文介绍并分析了具有Neumann边界条件的分布时间分数阶扩散波方程的块中心有限差分法。严格证明了该方案的无条件稳定性和全局收敛性。在压力和速度均非均匀的情况下,建立了具有最优收敛阶O(Delta t(1 + sigma / 2)+ h(2)+ k(2)+ sigma(2))的离散范数的一些先验估计矩形网格,其中Delta t,h,k和sigma是时间步长,x和y方向上的空间以及分布顺序。此外,通过数值实验证明了该方案的适用性和准确性,以支持我们的理论分析。 (C)2018年IMACS。由Elsevier B.V.发布。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号