首页> 外文期刊>Applied numerical mathematics >A boundary integral equation method for numerical solution of parabolic and hyperbolic Cauchy problems
【24h】

A boundary integral equation method for numerical solution of parabolic and hyperbolic Cauchy problems

机译:抛物型和双曲型柯西问题数值解的边界积分方程方法

获取原文
获取原文并翻译 | 示例

摘要

We present a unified boundary integral approach for the stable numerical solution of the ill-posed Cauchy problem for the heat and wave equation. The method is based on a transformation in time (semi-discretisation) using either the method of Rothe or the Laguerre transform, to generate a Cauchy problem for a sequence of inhomogeneous elliptic equations; the total entity of sequences is termed an elliptic system. For this stationary system, following a recent integral approach for the Cauchy problem for the Laplace equation, the solution is represented as a sequence of single-layer potentials invoking what is known as a fundamental sequence of the elliptic system thereby avoiding the use of volume potentials and domain discretisation. Matching the given data, a system of boundary integral equations is obtained for finding a sequence of layer densities. Full discretisation is obtained via a Nyström method together with the use of Tikhonov regularization for the obtained linear systems. Numerical results are included both for the heat and wave equation confirming the practical usefulness, in terms of accuracy and resourceful use of computational effort, of the proposed approach.
机译:对于热波方程的不适定柯西问题的稳定数值解,我们提出了统一的边界积分方法。该方法基于使用Rothe或Laguerre变换的时间变换(半离散化),以生成一系列不均匀椭圆方程的Cauchy问题。序列的总实体称为椭圆系统。对于该固定系统,遵循最近对Laplace方程的柯西问题的积分方法,该解决方案表示为调用椭圆系统基本序列的单层电势序列,从而避免了使用体积电势和域离散化。匹配给定的数据,获得边界积分方程组,以查找层密度序列。完全离散化是通过Nyström方法以及对获得的线性系统使用Tikhonov正则化获得的。热量和波动方程的数值结果都包括在内,从而证实了所提方法在准确性和资源利用方面的实际实用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号