首页> 外文期刊>Applied Mathematical Modelling >Automatic structure and parameter training methods for modeling of mechanical system by recurrent neural networks
【24h】

Automatic structure and parameter training methods for modeling of mechanical system by recurrent neural networks

机译:递归神经网络用于机械系统建模的自动结构和参数训练方法

获取原文
获取原文并翻译 | 示例

摘要

Automatic nonlinear-system identification is very useful for various disciplines including, e.g., automatic control, mechanical diagnostics and financial market prediction. This paper describes a fully automatic structural and weight learning method for recurrent neural networks (RNN). The basic idea is training with residuals, i.e. single hidden neuron RNN is trained to track the residuals of an existing network before it is augmented to the existing network to form a larger and, hopefully, better network. The network continues to grow until either a desired level of accuracy or a preset maximal number of neurons is reached. The method requires no guessing of initial weight values or the number of neurons in the hidden layer from users. This new structural and weight learning algorithm is used to find RNN models for a two-degree-of-freedom planar robot, a Van der Pol oscillator and a mackey-Glass equation using their simulated responses to excitations. The algorithm is able to find good RNN models in all three cases.
机译:自动非线性系统识别对于包括自动控制,机械诊断和金融市场预测在内的各种学科非常有用。本文介绍了一种用于递归神经网络(RNN)的全自动结构和权重学习方法。基本思想是使用残差进行训练,即训练单个隐藏神经元RNN以跟踪现有网络的残差,然后将其扩展到现有网络以形成更大且希望更好的网络。网络持续增长,直到达到所需的准确性水平或预设的最大神经元数量。该方法不需要用户猜测初始权重值或隐藏层中神经元的数量。使用这种新的结构和权重学习算法,利用其对激励的模拟响应,找到了两自由度平面机器人,Van der Pol振荡器和Mackey-Glass方程的RNN模型。在这三种情况下,该算法都能找到良好的RNN模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号