首页> 外文期刊>Applied Mathematical Modelling >New spatial decomposition method for accurate, mesh-independent agglomeration predictions in particle-laden flows
【24h】

New spatial decomposition method for accurate, mesh-independent agglomeration predictions in particle-laden flows

机译:用于精确,网状叠层流动的新空间分解方法

获取原文
获取原文并翻译 | 示例

摘要

This article presents a new data-driven spatial decomposition algorithm that allows the splitting of a domain containing point particles into elementary cells, each cell containing a spatially-uniform distribution of particles. For that purpose, the algorithm relies on the use of statistical information for the spatial distribution of particles and then extracts an optimal spatial decomposition. After evaluating the convergence and accuracy of the algorithm on homogeneous and inhomogeneous cases, this optimal spatial decomposition is applied to study the case of particle agglomeration. Indeed, in CFD context, recent developments on numerical simulations of particle agglomeration in complex and turbulent flows increasingly resort to Euler-Lagrange approaches. These methods are coupled with population balance equation (PBE)-like algorithms to compute agglomeration inside each cell of the Eulerian mesh. One of the key issues with such approaches is related to the spatially-uniform condition, i.e. agglomeration should be computed on a set of particles that are uniformly distributed locally in each cell. Yet, CFD simulations in realistic industrial/environmental cases often involve non-homogeneous concentrations of particles (due to local injection or accumulation in specific regions). We show that more accurate and mesh-independent predictions of particle agglomeration are made possible by the application of this new data-driven spatial decomposition algorithm.
机译:本文介绍了一种新的数据驱动的空间分解算法,其允许将包含点粒子的域分裂成基本细胞,每个细胞包含颗粒的空间均匀分布。为此目的,该算法依赖于使用用于粒子的空间分布的统计信息,然后提取最佳空间分解。在评估均匀和不均匀情况下算法的收敛性和准确性之后,应用这种最佳的空间分解来研究颗粒附聚的情况。实际上,在CFD背景下,复杂和湍流流动中颗粒聚集的数值模拟的最新发展越来越多地诉诸欧拉拉格朗日方法。这些方法与人口平衡方程(PBE)的算法耦合,以计算欧拉网格的每个单元内的集聚。这种方法的关键问题之一与空间均匀的条件有关,即应在一组颗粒上计算聚集,该颗粒在每个细胞中均匀地分布。然而,现实工业/环境案例中的CFD模拟通常涉及非均匀浓度的颗粒(由于局部注射或在特定区域中的积累)。我们表明,通过应用这种新的数据驱动的空间分解算法,可以实现更准确的颗粒聚集的预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号