首页> 外文期刊>Applied Mathematical Modelling >Material optimization of tri-directional functionally graded plates by using deep neural network and isogeometric multimesh design approach
【24h】

Material optimization of tri-directional functionally graded plates by using deep neural network and isogeometric multimesh design approach

机译:使用深神经网络和异常多木头设计方法进行三维功能梯度板的材料优化

获取原文
获取原文并翻译 | 示例

摘要

The paper is aimed at enhancing computational performance for optimizing the material distribution of tri-directional functionally graded (FG) plates. We exploit advantages of using a non-uniform rational B-spline (NURBS) basis function for describing material distribution varying through all three directions of functionally graded (FG) plates. Two-dimensional free vibration and buckling behaviors of multi-directional (1D, 2D and 3D) FG plates analyzed by using a combination of generalized shear deformation theory (GSDT) and isogeometric analysis (IGA) is first proposed. This approach can help to save a significant amount of computational cost while still ensure the accuracy of the solutions. The effectiveness and reliability of the present method are demonstrated by comparing it to other methods in the literature. The obtained results are in excellent agreement with the reference ones. More importantly, data sets consisting of input-output pairs are randomly generated from the analysis process through iterations for the training process in deep neural networks (DNN). DNN is utilized as an analysis tool to supplant finite element analysis to reduce computational cost. By using DNN, behaviors of the multi-directional FG plates are directly predicted from those material distributions. Optimal material distributions of tri-directional FG plates under free vibration or compression in various volume fraction constraints are found by using modified symbiotic organisms search (mSOS) algorithm for the first time. Moreover, an isogeometric multimesh design technique is also used to diminish a large number of design variables in optimization. Optimal results obtained by DNN are compared with those of IGA to verify the effectiveness of the proposed method.
机译:本文旨在提高用于优化三维功能梯度(FG)板的材料分布的计算性能。我们利用使用非均匀Rational B样条(NURBS)基函数的优点来描述通过功能梯度(FG)板的所有三个方向改变的材料分布。首先提出通过使用广义剪切变形理论(GSDT)和异诊测分析(IgA)的组合来分析多向(1D,2D和3D)FG板的二维自由振动和屈曲行为。这种方法可以帮助节省大量的计算成本,同时仍然可以确保解决方案的准确性。通过将其与文献中的其他方法进行比较来证明本方法的有效性和可靠性。所获得的结果与参考文献符合良好。更重要的是,通过在深神经网络(DNN)中的培训过程中,从分析过程中随机地生成包括输入输出对的数据集。 DNN用作分析工具以提升有限元分析以降低计算成本。通过使用DNN,直接从那些材料分布预测多向FG板的行为。首次使用修饰的共生生物搜索(MSOS)算法,发现在各种体积分数约束下自由振动或压缩下的三维FG板的最佳材料分布。此外,ISoGeometric Multimess设计技术还用于在优化中缩小大量的设计变量。通过DNN获得的最佳结果与IGA的最佳结果进行比较,以验证所提出的方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号