首页> 外文期刊>Applied Mathematical Modelling >An innovative flower pollination algorithm for continuous optimization problem
【24h】

An innovative flower pollination algorithm for continuous optimization problem

机译:一种创新的鲜花授粉算法,用于连续优化问题

获取原文
获取原文并翻译 | 示例

摘要

The flower pollination algorithm (FPA) is a relatively new swarm optimization algorithm that inspired by the pollination phenomenon of natural phanerogam. Since its proposed, it has received widespread attention and been applied in various engineering fields. However, the FPA still has certain drawbacks, such as inadequate optimization precision and poor convergence. In this paper, an innovative flower pollination algorithm based on cloud mutation is proposed (CMFPA), which adds information of all dimensions in the global optimization stage and uses the designed cloud mutation method to redistribute the population center. To verify the performance of the CMFPA in solving continuous optimization problems, we test twenty-four well-known functions, composition functions of CEC2013 and all benchmark functions of CEC2017. The results demonstrate that the CMFPA has better performance compared with other state-of-the-art algorithms. In addition, the CMFPA is implemented for five constrained optimization problems in practical engineering, and the performance is compared with state-of-the-art algorithms to further prove the effectiveness and efficiency of the CMFPA.
机译:花授粉算法(FPA)是一种相对较新的育种优化算法,其受天然PhaneroGam的授粉现象的启发。自提议以来,它受到了广泛的关注并应用于各种工程领域。然而,FPA仍然具有某些缺点,例如不足的优化精度和收敛不足。在本文中,提出了一种基于云突变的创新花授粉算法(CMFPA),它在全局优化阶段添加了所有尺寸的信息,并使用设计的云突变方法重新分配人口中心。为了验证CMFPA的性能,在解决连续优化问题时,我们测试了二十四个众所周知的功能,CEC2013的成分功能以及CEC2017的所有基准功能。结果表明,与其他最先进的算法相比,CMFPA具有更好的性能。此外,CMFPA在实际工程中实施了五个受限优化问题,并且将性能与最先进的算法进行了比较,以进一步证明CMFPA的有效性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号