首页> 外文期刊>Applied Mathematical Modelling >Analysis of melting behavior of PCMs in a cavity subject to a non-uniform magnetic field using a moving grid technique
【24h】

Analysis of melting behavior of PCMs in a cavity subject to a non-uniform magnetic field using a moving grid technique

机译:采用移动网格技术分析对非均匀磁场经受非均匀磁场的PCMS熔化行为

获取原文
获取原文并翻译 | 示例
           

摘要

Melting flow and heat transfer of electrically conductive phase change materials subjecting to a non-uniform magnetic field are addressed in a square enclosure. The top and bottom walls of the cavity are adiabatic, and the sidewalls are isothermal at different temperatures. The temperature of the hot wall is higher than the fusion temperature of PCM (T_f), and the cold wall is at the fusion temperature or lower. At the initial time, the cavity is filled with a solid saturated PCM. In the vicinity to the hot wall, there is an external line-source magnet, inducing a magnetic field. The location of the magnetic source (Y_0) can be changed along the hot wall. The cavity domain is divided into two parts of the liquid domain and the solid domain. The moving grid method is utilized to track the phase change interface at the exact fusion temperature of T_f. The governing equations for continuity, flow and heat transfer associated with the Arbitrary Lagrangian-Eulerian (ALE) moving mesh technique are solved using the finite element method. The results are investigated for the melting behavior of PCM by the study of Hartmann number (0 ≤ Ha ≤ 50) and the location of the magnetic source (0≤ Y_0 ≤ 1). Outcomes show that the effect of the magnetic field on the melting behavior of PCM is negligible at the initial stages of the melting (Fo < 1.15). However, after the initial stages of the melting, the effect of the presence of a magnetic field becomes significant. Moreover, the location of the magnetic source induces a feeble effect on the melting front at the initial melting stages, but its effect on the shape of the melting front increases by the increase of the non-dimensional time. The location of the magnetic source also significantly affects the streamlines patterns. Changing the position of the magnetic source from the bottom of the cavity (Y_0 = 0.2) to the almost middle of the cavity (Y_0 = 0.6) would decrease the required non-dimensional time of full melting from Fo = 10.4 to Fo = 9.0.
机译:在方形外壳中寻址经受非均匀磁场的导电相变材料的熔化流和传热。腔的顶壁是绝热的,并且侧壁在不同温度下是等温。热壁的温度高于PCM(T_F)的熔化温度,冷壁处于熔化温度或更低。在初始时间,腔填充有固体饱和PCM。在附近热壁中,存在外部线源磁铁,诱导磁场。磁源(Y_0)的位置可以沿热壁改变。腔结构域分为液域和固体结构域的两部分。移动网格方法用于跟踪T_F的精确熔化温度的相变界面。使用有限元方法解决了与任意拉格朗日 - 欧拉(ALE)移动网格技术相关的连续性,流动和传热的控制方程。通过研究Hartmann数(0≤HA≤50)和磁源的位置(0≤y_0≤1)来研究PCM的熔化行为的结果。结果表明,磁场对PCM的熔化行为的影响在熔化的初始阶段可忽略不计(FO <1.15)。然而,在熔化的初始阶段之后,磁场存在的效果变得显着。此外,磁源的位置在初始熔化阶段对熔化前的熔化前部感引起了微弱的影响,但其对熔化前的形状的影响通过不尺寸时间的增加而增加。磁源的位置也显着影响流线模式。将磁源的位置从腔的底部(Y_0 = 0.2)改变为腔的几乎中间(Y_0 = 0.6)将降低从FO = 10.4到FO = 9.0的完全熔化所需的无尺寸时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号