首页> 外文期刊>Applied Mathematical Modelling >A novel hybrid multivariate nonlinear grey model for forecasting the traffic-related emissions
【24h】

A novel hybrid multivariate nonlinear grey model for forecasting the traffic-related emissions

机译:一种用于预测流量相关排放的新型混合多变量非线性灰色模型

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we proposed a novel forecasting method using grey system theory for the traffic-related emissions at a national level. In our tests, grey relational analysis was used to identify time lags between input and output variables. We introduced a multivariate nonlinear grey model based on the kernel method to improve the accuracy of traffic-related emissions prediction. By solving a convex optimization problem instead of using an ordinary least squares estimation, the proposed model overcame the limitations of the classic grey forecasting models. A model confidence set test on the realistic results of forecasting traffic-related emissions in European Union member countries showed that the proposed model demonstrated a marked superiority over robust linear regression and support vector regression. Based on the non-methane volatile organic compounds from road transport and the relevant factors of the emission from 2004 to 2016, a more stringent European Union emission reduction commitment to the road transport for each year from 2020 to 2029 was suggested. We also investigated the advantages of the proposed model via the analysis on convergence, robustness, and sensitivity.
机译:在本文中,我们提出了一种新的预测方法,使用灰色系统理论在国家层面进行交通相关的排放。在我们的测试中,灰色关系分析用于识别输入和输出变量之间的时间滞后。我们介绍了基于内核方法的多变量非线性灰色模型,提高了与交通相关排放预测的准确性。通过求解凸优化问题而不是使用普通的最小二乘估计,所提出的模型克服了经典灰色预测模型的局限性。对欧盟成员国预测交通相关排放的现实结果的模型信心设定试验表明,该模型展示了鲁棒线性回归和支持向量回归的明显优势。根据公路运输的非甲烷挥发性有机化合物和2004年至2016年排放的相关因素,提出了对2020年至2029年的每年对公路运输的更严格的欧盟减排承诺。我们还通过分析趋同,鲁棒性和敏感性来调查所提出的模型的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号