首页> 外文期刊>Applied Mathematical Modelling >A nano-lubrication solution for high-speed heavy-loaded spur gears and stiffness modelling
【24h】

A nano-lubrication solution for high-speed heavy-loaded spur gears and stiffness modelling

机译:高速重载齿轮齿轮和刚度建模的纳米润滑解决方案

获取原文
获取原文并翻译 | 示例

摘要

Nanofluids have excellent mechanical and thermal properties. Serious wear and high temperatures hamper the development of high-speed gear drives, and the application of nanofluids to gear lubrication is a potential solution. The main purpose of this paper is to investigate the mechanism by which nanofluids affect the lubrication performance of high-speed gear drives. A revised model of calculating the time-dependent oil normal stiffness and tangential stiffness is proposed. The density equation and viscosity equation are revised. Firstly, the numerical algorithm for high-speed spur gears lubricated by nanofluids is validated based on the classical minimum film thickness formula of Dowson, and then the differences between smooth and rough contact are analyzed. Furthermore, the effects of nanoparticle shape and concentration on tribology performance of gear lube are comprehensively investigated. Finally, the influences of surface roughness on film velocity field distribution are discussed. The simulation results indicate that applying spherical alumina nanoparticles to gear lube as additives is beneficial to the anti-wear performance of gear teeth and the lubricating property of lubricants, which considerably decrease friction coefficient and maximum temperature of the total contact region. Moreover, film normal stiffness of spherical alumina nanoparticles is close to base oil which means it maintains excellent load-carrying capacity. Higher concentrations of nanoparticles reduce the friction coefficient and maximum temperatures of the total contact region, and cause an increase in film tangential stiffness. The surface roughness remarkably influences film velocity field and high amplitude roughness induces formation of many vortexes in the contact center, and these vortexes move from gear surface to pinion surface in a total engagement cycle. (C) 2019 Elsevier Inc. All rights reserved.
机译:纳米流体具有优异的机械和热性能。严重的磨损和高温妨碍了高速齿轮驱动的开发,纳米流体在齿轮润滑的应用是潜在的解决方案。本文的主要目的是探讨纳米流体影响高速齿轮驱动器的润滑性能的机制。提出了计算时间依赖性油正常刚度和切向刚度的修正模型。修订密度方程和粘度方程。首先,基于Dowson的经典最小膜厚度公式验证了纳米流体润滑的高速正齿轮的数值算法,分析了平滑和粗糙接触之间的差异。此外,全面研究了纳米颗粒形状和浓度对齿轮润滑剂的摩擦学性能的影响。最后,讨论了表面粗糙度对薄膜速度场分布的影响。仿真结果表明,作为添加剂的齿轮润滑剂施加球形氧化铝纳米粒子是有益于齿轮齿的抗磨损性能和润滑剂的润滑性能,这显着降低了总接触区域的摩擦系数和最大温度。此外,球形氧化铝纳米粒子的膜正常刚度靠近基础油,这意味着它保持出色的承载能力。较高浓度的纳米颗粒降低了总接触区域的摩擦系数和最大温度,并导致膜切向刚度的增加。表面粗糙度显着影响薄膜速度场和高幅度粗糙度在接触中心中诱导形成许多涡流的形成,并且这些涡旋在总接合循环中从齿轮表面移动到小齿轮表面。 (c)2019 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号