首页> 外文期刊>Applied Mathematical Modelling >A nano-lubrication solution for high-speed heavy-loaded spur gears and stiffness modelling
【24h】

A nano-lubrication solution for high-speed heavy-loaded spur gears and stiffness modelling

机译:高速重载正齿轮的纳米润滑解决方案和刚度建模

获取原文
获取原文并翻译 | 示例
       

摘要

Nanofluids have excellent mechanical and thermal properties. Serious wear and high temperatures hamper the development of high-speed gear drives, and the application of nanofluids to gear lubrication is a potential solution. The main purpose of this paper is to investigate the mechanism by which nanofluids affect the lubrication performance of high-speed gear drives. A revised model of calculating the time-dependent oil normal stiffness and tangential stiffness is proposed. The density equation and viscosity equation are revised. Firstly, the numerical algorithm for high-speed spur gears lubricated by nanofluids is validated based on the classical minimum film thickness formula of Dowson, and then the differences between smooth and rough contact are analyzed. Furthermore, the effects of nanoparticle shape and concentration on tribology performance of gear lube are comprehensively investigated. Finally, the influences of surface roughness on film velocity field distribution are discussed. The simulation results indicate that applying spherical alumina nanoparticles to gear lube as additives is beneficial to the anti-wear performance of gear teeth and the lubricating property of lubricants, which considerably decrease friction coefficient and maximum temperature of the total contact region. Moreover, film normal stiffness of spherical alumina nanoparticles is close to base oil which means it maintains excellent load-carrying capacity. Higher concentrations of nanoparticles reduce the friction coefficient and maximum temperatures of the total contact region, and cause an increase in film tangential stiffness. The surface roughness remarkably influences film velocity field and high amplitude roughness induces formation of many vortexes in the contact center, and these vortexes move from gear surface to pinion surface in a total engagement cycle. (C) 2019 Elsevier Inc. All rights reserved.
机译:纳米流体具有出色的机械和热性能。严重的磨损和高温阻碍了高速齿轮驱动器的发展,将纳米流体应用于齿轮润滑是一种潜在的解决方案。本文的主要目的是研究纳米流体影响高速齿轮驱动器润滑性能的机理。提出了修正的计算随时间变化的油法向刚度和切向刚度的模型。修改了密度方程和粘度方程。首先,基于经典的道森最小最小膜厚公式,验证了纳米流体润滑的高速正齿轮的数值算法,然后分析了光滑和粗糙接触之间的差异。此外,全面研究了纳米颗粒形状和浓度对齿轮润滑油摩擦学性能的影响。最后,讨论了表面粗糙度对膜速度场分布的影响。仿真结果表明,将球形氧化铝纳米颗粒作为齿轮润滑油添加到齿轮中有利于齿轮的抗磨性能和润滑剂的润滑性能,从而大大降低了摩擦系数和整个接触区域的最高温度。此外,球形氧化铝纳米粒子的薄膜法向刚度接近于基础油,这意味着它保持了出色的承载能力。较高浓度的纳米粒子会降低摩擦系数和整个接触区域的最高温度,并导致薄膜切向刚度增加。表面粗糙度显着影响膜速度场,高振幅粗糙度会在接触中心形成许多旋涡,这些旋涡会在整个啮合周期中从齿轮表面移动到小齿轮表面。 (C)2019 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号