首页> 外文期刊>Applied Mathematical Modelling >A novel mathematical inventory model for growing-mortal items (case study: Rainbow trout)
【24h】

A novel mathematical inventory model for growing-mortal items (case study: Rainbow trout)

机译:一种新颖的数学模型,用于存放凡人的物品(案例研究:虹鳟鱼)

获取原文
获取原文并翻译 | 示例

摘要

Unlike the extensive inventory models for both ameliorating and deteriorating items, incorporating some specific features of these products have mostly been neglected. To fill this research gap, providing an appropriate mathematical inventory model for both ameliorating and deteriorating items is of paramount importance. In this regard, this paper proposes a novel mathematical inventory model for products called growing-mortal items in a two-echelon supply chain consisting of one supplier and one farmer. The proposed inventory model is more precise than analogous inventory models due to the fact that the specific growth function for the item is considered as well as mortality rate. As a case study, the model is applied to rainbow trout, which can be used for other types of growing-mortal items. Moreover, a feeding function is first-ever proposed for rainbow trout regarding the case study. The goal of this paper is to study the growth period in the supplier and then in the farmer sites to maximize the profit of the supplier as a leader and farmer as a follower under a Stackelberg game. To demonstrate how to reduce the inventory system costs by two coordination mechanisms, namely revenue-sharing and revenue and cost sharing, the model is solved under centralized and decentralized cases. Finally, sensitivity analysis on key parameters is also conducted to derive some managerial insights. (C) 2019 Elsevier Inc. All rights reserved.
机译:与用于改善和恶化物品的大量库存模型不同,合并这些产品的某些特定功能通常被忽略。为了填补这一研究空白,为项目的改善和恶化提供适当的数学库存模型至关重要。在这方面,本文提出了一种新颖的数学库存模型,该模型在由一个供应商和一个农民组成的两级供应链中称为被称为死亡物品的产品。拟议的库存模型比类似的库存模型更精确,因为考虑到了物料的特定增长函数以及死亡率。作为案例研究,该模型应用于虹鳟鱼,该虹鳟鱼可用于其他类型的生长中的致命物品。此外,针对案例研究,虹鳟鱼首次提出了饲喂功能。本文的目的是研究供应商的成长期,然后研究农民的成长期,以在Stackelberg博弈中最大程度地提高供应商作为领导者和农民作为跟随者的利润。为了演示如何通过收益共享和收益与成本分担两种协调机制降低库存系统成本,该模型在集中和分散情况下进行了求解。最后,还对关键参数进行了敏感性分析,以得出一些管理上的见解。 (C)2019 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号