首页> 外文期刊>Applied Mathematical Modelling >Analytical integration and exact geometrical representation in the two-dimensional elastostatic boundary element method
【24h】

Analytical integration and exact geometrical representation in the two-dimensional elastostatic boundary element method

机译:二维弹性静力边界元方法的解析积分和精确几何表示

获取原文
获取原文并翻译 | 示例

摘要

Two ways of improving the accuracy of results in the boundary element method are considered. Since the geometries of many problems of practical interest are created from straight lines and circular arcs, errors caused by representing such geometries approximately using quadratic shape functions can be removed using exact geometrical representations for straight and circular boundaries. Besides, exact geometrical representations enable exact analytical integrations for some situations, thereby eliminating the errors caused by approximate numerical integration. The results of some simple test problems show that the use of exact representation of straight and circular geometries, and analytical integration in the situations where this is possible, offers worthwhile benefits in the boundary element analysis of two-dimensional elastostatics problems.
机译:考虑了两种在边界元法中提高结果准确性的方法。由于许多实际问题的几何形状是由直线和圆弧产生的,因此可以使用直线和圆形边界的精确几何表示来消除由近似使用二次形状函数表示这种几何形状而引起的误差。此外,精确的几何表示可以在某些情况下进行精确的分析积分,从而消除了近似数值积分所引起的误差。一些简单的测试问题的结果表明,使用直线和圆形几何图形的精确表示以及在可能的情况下进行分析积分,可以为二维弹性静力学问题的边界元分析提供有价值的好处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号