首页> 外文期刊>Applied Mathematical Modelling >A matrix modular neural network based on task decomposition with subspace division by adaptive affinity propagation clustering
【24h】

A matrix modular neural network based on task decomposition with subspace division by adaptive affinity propagation clustering

机译:自适应亲和力传播聚类的基于子空间划分任务分解的矩阵模块化神经网络

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a matrix modular neural network (MMNN) based on task decomposition with subspace division by adaptive affinity propagation clustering is developed to solve classification tasks. First, we propose an adaptive version to affinity propagation clustering, which is adopted to divide each class subspace into several clusters. By these divisions of class spaces, a classification problem can be decomposed into many binary classification subtasks between cluster pairs, which are much easier than the classification task in the original multi-class space. Each of these binary classification subtasks is solved by a neural network designed by a dynamic process. Then all designed network modules form a network matrix structure, which produces a matrix of outputs that will be fed to an integration machine so that a classification decision can be made. Finally, the experimental results show that our proposed MMNN system has more powerful generalization capability than the classifiers of single 3-layered perceptron and modular neural networks adopting other task decomposition techniques, and has a less training time consumption.
机译:为了解决分类任务,本文提出了一种基于子空间划分的任务分解和自适应亲和力传播聚类的矩阵模块化神经网络。首先,我们提出一种适应性传播聚类的自适应版本,该聚类被用于将每个类子空间划分为几个聚类。通过类空间的这些划分,分类问题可以分解为簇对之间的许多二进制分类子任务,这比原始多类空间中的分类任务容易得多。这些二进制分类子任务中的每一个都由动态过程设计的神经网络解决。然后,所有设计的网络模块都形成一个网络矩阵结构,该结构生成输出矩阵,该输出矩阵将被馈送到集成机,从而可以做出分类决策。最后,实验结果表明,与采用其他任务分解技术的单三层感知器和模块化神经网络的分类器相比,我们提出的MMNN系统具有更强大的泛化能力,并且训练时间消耗更少。

著录项

  • 来源
    《Applied Mathematical Modelling》 |2010年第12期|P.3884-3895|共12页
  • 作者单位

    School of Computer and Information, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, China;

    rnSchool of Computer and Information, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, China;

    Laboratoire des sciences de l'information et des systemes, Univ. Sud Toulon Var R229-BP20132-83957 La Garde, France;

    rnSchool of Computer and Information, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, China Department of Computer Science, University of Vermont, Burlington, VT 05405, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    modular neural networks; task decomposition; affinity propagation; time consumption; generalization capability;

    机译:模块化神经网络;任务分解;亲和力传播时间消耗;泛化能力;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号