首页> 外文期刊>Applied Mathematical Modelling >Non-probabilistic convex models and interval analysis method for dynamic response of a beam with bounded uncertainty
【24h】

Non-probabilistic convex models and interval analysis method for dynamic response of a beam with bounded uncertainty

机译:有界不确定性梁动力响应的非概率凸模型和区间分析方法

获取原文
获取原文并翻译 | 示例

摘要

This paper is concerned with the comparison of two non-probabilistic set-theoretical models for dynamic response measures of an infinitely long beam. The beam is on an uncertain foundation and subjected to a moving force with constant speed. The steady state vibration is analyzed with finite element method. The dynamic responses of the beam are approximated to the first-order respect of the uncertainty variables. As a rule, in convex models and interval analysis, the uncertainties are considered to be unknown, but they give out their allowable vector space. Comparing the convex models with interval analysis in mathematical proofs and numerical calculations, it's shows that under the condition of transform an interval vector to an outer enclosed ellipsoid, the dynamic response of the infinitely long beam predicted by interval analysis is smaller than that by convex models; under the condition of transform a hyperellipsoid to an outer enclosed interval vector, the dynamic response of the infinitely long beam calculated by convex models is smaller than that by interval analysis method.
机译:本文关注于无限长梁动力响应的两种非概率集合理论模型的比较。梁位于不确定的基础上,并受到恒定速度的移动力。用有限元方法分析稳态振动。光束的动态响应近似于不确定性变量的一阶方面。通常,在凸模型和区间分析中,不确定性被认为是未知的,但会给出其允许的向量空间。在数学证明和数值计算中将凸模型与区间分析进行比较,结果表明,在将区间矢量转换为外封闭椭球体的条件下,区间分析预测的无限长梁的动力响应小于凸模型。 ;在将超椭球体转换为外部封闭间隔向量的条件下,凸模型计算的无限长梁的动力响应小于间隔分析法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号