首页> 外文期刊>Applied Mathematical Modelling >Redefined cubic B-splines collocation method for solving convection-diffusion equations
【24h】

Redefined cubic B-splines collocation method for solving convection-diffusion equations

机译:对流扩散方程的重新定义三次B样条搭配方法

获取原文
获取原文并翻译 | 示例

摘要

In this work, we discuss collocation method based on redefined cubic B-splines basis functions for solving convection-diffusion equation with Dirichlet's type boundary conditions. Stability of this method has been discussed and shown that it is unconditionally stable. The developed method is tested on various problems and the numerical results are reported in tabular form. The computed results are compared wherever possible with those already available in literature. The method is shown to work for Peclet number ≤ 10. Easy and economical implementation process is the strength of it. This method can be easily extended to handle non-linear convection-diffusion partial differential equations.
机译:在这项工作中,我们讨论基于重新定义的三次B样条基函数的搭配方法,用于求解具有Dirichlet类型边界条件的对流扩散方程。已经讨论了该方法的稳定性,并证明它是无条件稳定的。对所开发的方法进行了各种问题的测试,数值结果以表格形式报告。尽可能将计算结果与文献中已有的结果进行比较。经证明,该方法适用于Peclet数≤10的情况。简便且经济的实施过程是该方法的优势。该方法可以轻松扩展为处理非线性对流扩散偏微分方程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号