首页> 外文期刊>Applied Mathematical Modelling >Investigation of physiological pulsatile flow in a model arterial stenosis using large-eddy and direct numerical simulations
【24h】

Investigation of physiological pulsatile flow in a model arterial stenosis using large-eddy and direct numerical simulations

机译:使用大涡和直接数值模拟研究模型性动脉狭窄中的生理脉动流

获取原文
获取原文并翻译 | 示例
       

摘要

Physiological pulsatile flow in a 3D model of arterial stenosis is investigated by using large eddy simulation (LES) technique. The computational domain chosen is a simple channel with a biological type stenosis formed eccentrically on the top wall. The physiological pulsation is generated at the inlet using the first harmonic of the Fourier series of pressure pulse. In LES, the large scale flows are resolved fully while the unresolved subgrid scale (SGS) motions are modelled using a localized dynamic model. Due to the narrowing of artery the pulsatile flow becomes transition-to-turbulent in the downstream region of the stenosis, where a high level of turbulent fluctuations is achieved, and some detailed information about the nature of these fluctuations are revealed through the investigation of the turbulent energy spectra. Transition-to-turbulent of the pulsatile flow in the post stenosis is examined through the various numerical results such as velocity, streamlines, velocity vectors, vortices, wall pressure and shear stresses, turbulent kinetic energy, and pressure gradient. A comparison of the LES results with the coarse DNS are given for the Reynolds number of 2000 in terms of the mean pressure, wall shear stress as well as the turbulent characteristics. The results show that the shear stress at the upper wall is low just prior to the centre of the stenosis, while it is maximum in the throat of the stenosis. But, at the immediate post stenotic region, the wall shear stress takes the oscillating form which is quite harmful to the blood cells and vessels. In addition, the pressure drops at the throat of the stenosis where the re-circulated flow region is created due to the adverse pressure gradient. The maximum turbulent kinetic energy is located at the post stenosis with the presence of the inertial sub-range region of slope -5/3.
机译:通过使用大涡模拟(LES)技术研究了3D动脉狭窄模型中的生理脉动流。选择的计算域是一个简单的通道,在顶壁上偏心地形成了生物型狭窄。使用压力脉冲的傅里叶级数的一次谐波在入口处产生生理脉动。在LES中,大型流可以完全解析,而未解析的子网格规模(SGS)运动则使用局部动态模型建模。由于动脉变窄,脉动流在狭窄的下游区域转变为湍流,在该区域实现了高水平的湍流波动,并且通过对脉动的研究揭示了有关这些波动性质的一些详细信息。湍流能谱。通过各种数值结果(例如速度,流线,速度矢量,涡旋,壁压力和切应力,湍动能和压力梯度)检查狭窄后脉动流向湍流的过渡。对于雷诺数为2000的LES结果与粗糙DNS的比较,从平均压力,壁面剪应力以及湍流特性方面进行了比较。结果表明,在狭窄中心之前,上壁的剪应力较低,而在狭窄喉部则最大。但是,在狭窄后立即区域,壁切应力呈振荡形式,这对血细胞和血管非常有害。另外,由于不利的压力梯度,在狭窄的喉部处的压力下降,在狭窄的喉部处形成了再循环的流动区域。最大湍动能位于狭窄后,存在倾斜度为-5/3的惯性子范围区域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号