首页> 外文期刊>Applied Mathematical Modelling >L1 regularization method in electrical impedance tomography by using the L1-curve (Pareto frontier curve)
【24h】

L1 regularization method in electrical impedance tomography by using the L1-curve (Pareto frontier curve)

机译:在电阻抗成像L1正则化方法,通过使用L1-曲线(帕累托边界曲线)

获取原文
获取原文并翻译 | 示例

摘要

Electrical impedance tomography (EIT), as an inverse problem, aims to calculate the internal conductivity distribution at the interior of an object from current-voltage measurements on its boundary. Many inverse problems are ill-posed, since the measurement data are limited and imperfect. To overcome ill-posedness in EIT, two main types of regularization techniques are widely used. One is categorized as the projection methods, such as truncated singular value decomposition (SVD or TSVD). The other categorized as penalty methods, such as Tikhonov regularization, and total variation methods. For both of these methods, a good regularization parameter should yield a fair balance between the perturbation error and regularized solution. In this paper a new method combining the least absolute shrinkage and selection operator (LASSO) and the basis pursuit denoising (BPDN) is introduced for EIT. For choosing the optimum regularization we use the L1-curve (Pareto frontier curve) which is similar to the L-curve used in optimising L2-norm problems. In the L1 -curve we use the L1 -norm of the solution instead of the L2 norm. The results are compared with the TSVD regularization method where the best regularization parameters are selected by observing the Picard condition and minimizing generalized cross validation (GCV) function. We show that this method yields a good regularization parameter corresponding to a regularized solution. Also, in situations where little is known about the noise level σ, it is also useful to visualize the L1-curve in order to understand the trade-offs between the norms of the residual and the solution. This method gives us a means to control the sparsity and filtering of the ill-posed EIT problem. Tracing this curve for the optimum solution can decrease the number of iterations by three times in comparison with using LASSO or BPDN separately.
机译:作为一个反问题,电阻抗断层扫描(EIT)的目的是根据对象边界上的电流-电压测量结果来计算对象内部的内部电导率分布。由于测量数据有限且不完善,因此存在许多反问题。为了克服EIT中的不适性,广泛使用了两种主要的正则化技术。一种分类为投影方法,例如截断奇异值分解(SVD或TSVD)。另一种分类为惩罚方法,例如Tikhonov正则化和总变异方法。对于这两种方法,良好的正则化参数都应在摄动误差和正则化解之间产生合理的平衡。本文提出了一种结合最小绝对收缩和选择算子(LASSO)和基本追踪去噪(BPDN)的EIT新方法。为了选择最佳正则化,我们使用L1曲线(帕累托边界曲线),该曲线与用于优化L2范数问题的L曲线相似。在L1曲线中,我们使用解的L1范数而不是L2范数。将结果与TSVD正则化方法进行比较,该方法通过观察Picard条件并最小化广义交叉验证(GCV)函数来选择最佳正则化参数。我们表明,该方法产生了与正则化解相对应的良好正则化参数。同样,在对噪声水平σ知之甚少的情况下,可视化L1曲线也很有用,以了解残差范数和解的取舍。此方法为我们提供了一种方法,可以控制不适定的EIT问题的稀疏性和过滤。与分别使用LASSO或BPDN相比,跟踪此曲线以获得最佳解决方案可使迭代次数减少三倍。

著录项

  • 来源
    《Applied Mathematical Modelling》 |2012年第3期|p.1095-1105|共11页
  • 作者单位

    School of Electrical and Information Engineering, CARLAB, The University of Sydney, NSW 2006, Australia;

    School of Electrical and Information Engineering, CARLAB, The University of Sydney, NSW 2006, Australia;

    School of Electrical and Information Engineering, CARLAB, The University of Sydney, NSW 2006, Australia;

    Bioelectronics and Neuroscience, University of Western Sydney, NSW 2751, Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    electrical impedance tomography; L1 -curve (pareto frontier curve); regularization;

    机译:电阻抗层析成像L1曲线(相近边界曲线);正则化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号