首页> 外文期刊>Applied Mathematical Modelling >A new model for automatic normalization of multitemporal satellite images using Artificial Neural Network and mathematical methods
【24h】

A new model for automatic normalization of multitemporal satellite images using Artificial Neural Network and mathematical methods

机译:利用人工神经网络和数学方法对多时相卫星影像进行自动归一化的新模型

获取原文
获取原文并翻译 | 示例

摘要

Relative Radiometric Normalization is often required in remote sensing image analyses particularly in the land cover change detection process. Normalization process minimizes the radiometric differences between two images caused by inequalities in the acquisition conditions rather than changes in surface reflectance. A wide range of RRN methods have been developed to adjust linear models. This paper proposes an automated Relative Radio-metric Normalization (RRN) method to adjust a non-linear model based on an Artificial Neural Network (ANN) and unchanged pixels. The proposed method includes the following stages: (1) automatic detection of unchanged pixels based on a new idea that uses CVA (Change Vector Analysis) method, PCA (Principal Component Analysis) transformation and K-means clustering technique, (2) evaluation of different architectures of perceptron neural networks to find the best architecture for this specific task and (3) use of the aforementioned network for normalizing the subject image. The method has been implemented on two images taken by the TM sensor. Experimental results confirm the effectiveness of the presented technique in the automatic detection of unchanged pixels and minimizing imaging condition effects (i.e., atmosphere and other effective parameters).
机译:遥感图像分析中经常需要相对辐射归一化,尤其是在土地覆盖变化检测过程中。归一化过程最大程度地减少了由采集条件不均引起的两个图像之间的辐射度差异,而不是表面反射率的变化。已经开发了各种各样的RRN方法来调整线性模型。本文提出了一种自动相对辐射归一化(RRN)方法,用于基于人工神经网络(ANN)和不变像素调整非线性模型。所提出的方法包括以下几个阶段:(1)基于使用CVA(变化矢量分析)方法,PCA(主成分分析)变换和K-means聚类技术的新思想自动检测未变化的像素,(2)评估感知器神经网络的不同架构,以找到针对此特定任务的最佳架构,以及(3)使用上述网络对目标图像进行归一化。该方法已在TM传感器拍摄的两个图像上实现。实验结果证实了所提出的技术在自动检测未改变的像素并最小化成像条件影响(即,大气和其他有效参数)方面的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号