首页> 外文期刊>Applied Mathematical Modelling >Utilizing feed-back neural network approach for solving linear Fredholm integral equations system
【24h】

Utilizing feed-back neural network approach for solving linear Fredholm integral equations system

机译:利用反馈神经网络方法求解线性Fredholm积分方程组

获取原文
获取原文并翻译 | 示例

摘要

This paper intended to offer an architecture of artificial neural networks (NNs) for finding approximate solution of a second kind linear Fredholm integral equations system. For this purpose, first we substitute the N-th truncation of the Taylor expansion for unknown functions in the origin system. By applying the suggested neural network for adjusting the real coefficients of given expansions in resulting system. The proposed NN is a two-layer feedback neural network such that it can get a initial vector and then calculates it's corresponding output vector. In continuance, a cost function is defined by using output vector and the target outputs. Consequently, the reported NN using a learning algorithm that based on the gradient descent method, will adjust the coefficients in given Taylor series. Eventually, we have showed this method in comparison with existing numerical methods such as trapezoidal quadrature rule provides solutions with good generalization and high accuracy. The proposed method is illustrated by several examples with computer simulations.
机译:本文旨在提供一种人工神经网络(NN)的体系结构,以寻找第二类线性Fredholm积分方程系统的近似解。为此,首先我们将泰勒展开的第N个截断替换为原点系统中的未知函数。通过应用建议的神经网络来调整所得系统中给定扩展的实系数。所提出的神经网络是两层反馈神经网络,因此它可以获取初始向量,然后计算出其对应的输出向量。连续地,使用输出向量和目标输出定义成本函数。因此,使用基于梯度下降法的学习算法所报告的神经网络将在给定的泰勒级数中调整系数。最终,我们证明了该方法与现有的数值方法(例如梯形正交法则)提供的解决方案具有很好的通用性和高精度。通过计算机仿真的几个例子说明了所提出的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号