首页> 外文期刊>Applied Mathematical Modelling >Modelling and analysis of the dynamic behavior of inhomogeneous continuum containing a circular inclusion
【24h】

Modelling and analysis of the dynamic behavior of inhomogeneous continuum containing a circular inclusion

机译:包含圆形夹杂物的非均匀连续体动力学行为的建模与分析

获取原文
获取原文并翻译 | 示例

摘要

Based on the complex function theory, an universal approach of solving the dynamic stress concentration around a circular inclusion in two-dimensional (2D) inhomogeneous medium is presented. The inhomogeneous Helmholtz equation with variable coefficient is converted to the standard Helmholtz equation by using the general conformal transformation technique analytically. An inhomogeneity with the density varying as a smooth function of two spatial coordinates and the constant elastic modulus is established to verify the accuracy of analytical results. As a typical example, an exponential variation of the density is introduced for analyzing the dynamic stress concentration factor (DSCF) around the inclusion. Numerical results show the efficiency of the method and the effects of the medium inhomogeneity, reference wave number of the background medium, the reference wave number and shear modulus ratios between the background medium and inclusion.
机译:基于复函数理论,提出了一种求解二维(2D)非均匀介质中圆形夹杂物周围动应力集中的通用方法。通过使用一般的保形变换技术,将变系数的非均质Helmholtz方程转换为标准Helmholtz方程。建立了密度随两个空间坐标的平滑函数而变化且弹性模量恒定的不均匀性,以验证分析结果的准确性。作为一个典型的例子,引入密度的指数变化来分析夹杂物周围的动态应力集中系数(DSCF)。数值结果表明了该方法的有效性以及介质不均匀性,背景介质的参考波数,背景介质与夹杂物之间的参考波数和剪切模量比的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号